Do you want to publish a course? Click here

Dynamic Geometric Independent Set

301   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned $d$-dimensional hypercubes. It is known that a maximum independent set of a collection of $n$ intervals can be found in $O(nlog n)$ time, while it is already textsf{NP}-hard for a set of unit squares. Moreover, the problem is inapproximable on many important graph families, but admits a textsf{PTAS} for a set of arbitrary pseudo-disks. Therefore, a fundamental question in computational geometry is whether it is possible to maintain an approximate maximum independent set in a set of dynamic geometric objects, in truly sublinear time per insertion or deletion. In this work, we answer this question in the affirmative for intervals, squares and hypercubes. First, we show that for intervals a $(1+varepsilon)$-approximate maximum independent set can be maintained with logarithmic worst-case update time. This is achieved by maintaining a locally optimal solution using a constant number of constant-size exchanges per update. We then show how our interval structure can be used to design a data structure for maintaining an expected constant factor approximate maximum independent set of axis-aligned squares in the plane, with polylogarithmic amortized update time. Our approach generalizes to $d$-dimensional hypercubes, providing a $O(4^d)$-approximation with polylogarithmic update time. Those are the first approximation algorithms for any set of dynamic arbitrary size geometric objects; previous results required bounded size ratios to obtain polylogarithmic update time. Furthermore, it is known that our results for squares (and hypercubes) cannot be improved to a $(1+varepsilon)$-approximation with the same update time.



rate research

Read More

We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present data structures that maintain a constant-factor approximate maximum independent set for broad classes of fat objects in $d$ dimensions, where $d$ is assumed to be a constant, in sublinear textit{worst-case} update time. This gives the first results for dynamic independent set in a wide variety of geometric settings, such as disks, fat polygons, and their high-dimensional equivalents. For axis-aligned squares and hypercubes, our result improves upon all (recently announced) previous works. We obtain, in particular, a dynamic $(4+epsilon)$-approximation for squares, with $O(log^4 n)$ worst-case update time. Our result is obtained via a two-level approach. First, we develop a dynamic data structure which stores all objects and provides an approximate independent set when queried, with output-sensitive running time. We show that via standard methods such a structure can be used to obtain a dynamic algorithm with textit{amortized} update time bounds. Then, to obtain worst-case update time algorithms, we develop a generic deamortization scheme that with each insertion/deletion keeps (i) the update time bounded and (ii) the number of changes in the independent set constant. We show that such a scheme is applicable to fat objects by showing an appropriate generalization of a separator theorem. Interestingly, we show that our deamortization scheme is also necessary in order to obtain worst-case update bounds: If for a class of objects our scheme is not applicable, then no constant-factor approximation with sublinear worst-case update time is possible. We show that such a lower bound applies even for seemingly simple classes of geometric objects including axis-aligned rectangles in the plane.
124 - Yuhao Du , Hengjie Zhang 2018
Maintaining maximal independent set in dynamic graph is a fundamental open problem in graph theory and the first sublinear time deterministic algorithm was came up by Assadi, Onak, Schieber and Solomon(STOC18), which achieves $O(m^{3/4})$ amortized update time. We have two main contributions in this paper. We present a new simple deterministic algorithm with $O(m^{2/3}sqrt{log m})$ amortized update time, which improves the previous best result. And we also present the first randomized algorithm with expected $O(sqrt{m}log^{1.5}m)$ amortized time against an oblivious adversary.
We present the first algorithm for maintaining a maximal independent set (MIS) of a fully dynamic graph---which undergoes both edge insertions and deletions---in polylogarithmic time. Our algorithm is randomized and, per update, takes $O(log^2 Delta cdot log^2 n)$ expected time. Furthermore, the algorithm can be adjusted to have $O(log^2 Delta cdot log^4 n)$ worst-case update-time with high probability. Here, $n$ denotes the number of vertices and $Delta$ is the maximum degree in the graph. The MIS problem in fully dynamic graphs has attracted significant attention after a breakthrough result of Assadi, Onak, Schieber, and Solomon [STOC18] who presented an algorithm with $O(m^{3/4})$ update-time (and thus broke the natural $Omega(m)$ barrier) where $m$ denotes the number of edges in the graph. This result was improved in a series of subsequent papers, though, the update-time remained polynomial. In particular, the fastest algorithm prior to our work had $widetilde{O}(min{sqrt{n}, m^{1/3}})$ update-time [Assadi et al. SODA19]. Our algorithm maintains the lexicographically first MIS over a random order of the vertices. As a result, the same algorithm also maintains a 3-approximation of correlation clustering. We also show that a simpler variant of our algorithm can be used to maintain a random-order lexicographically first maximal matching in the same update-time.
In this paper we present new algorithmic solutions for several constrained geometric server placement problems. We consider the problems of computing the 1-center and obnoxious 1-center of a set of line segments, constrained to lie on a line segment, and the problem of computing the K-median of a set of points, constrained to lie on a line. The presented algorithms have applications in many types of distributed systems, as well as in various fields which make use of distributed systems for running some of their applications (like chemistry, metallurgy, physics, etc.).
Let $A$ and $B$ be two point sets in the plane of sizes $r$ and $n$ respectively (assume $r leq n$), and let $k$ be a parameter. A matching between $A$ and $B$ is a family of pairs in $A times B$ so that any point of $A cup B$ appears in at most one pair. Given two positive integers $p$ and $q$, we define the cost of matching $M$ to be $c(M) = sum_{(a, b) in M}|{a-b}|_p^q$ where $|{cdot}|_p$ is the $L_p$-norm. The geometric partial matching problem asks to find the minimum-cost size-$k$ matching between $A$ and $B$. We present efficient algorithms for geometric partial matching problem that work for any powers of $L_p$-norm matching objective: An exact algorithm that runs in $O((n + k^2) {mathop{mathrm{polylog}}} n)$ time, and a $(1 + varepsilon)$-approximation algorithm that runs in $O((n + ksqrt{k}) {mathop{mathrm{polylog}}} n cdot logvarepsilon^{-1})$ time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in $O(min{n^2, rn^{3/2}} {mathop{mathrm{polylog}}} n)$ time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا