Do you want to publish a course? Click here

Efficient Algorithms for Geometric Partial Matching

118   0   0.0 ( 0 )
 Added by Hsien-Chih Chang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Let $A$ and $B$ be two point sets in the plane of sizes $r$ and $n$ respectively (assume $r leq n$), and let $k$ be a parameter. A matching between $A$ and $B$ is a family of pairs in $A times B$ so that any point of $A cup B$ appears in at most one pair. Given two positive integers $p$ and $q$, we define the cost of matching $M$ to be $c(M) = sum_{(a, b) in M}|{a-b}|_p^q$ where $|{cdot}|_p$ is the $L_p$-norm. The geometric partial matching problem asks to find the minimum-cost size-$k$ matching between $A$ and $B$. We present efficient algorithms for geometric partial matching problem that work for any powers of $L_p$-norm matching objective: An exact algorithm that runs in $O((n + k^2) {mathop{mathrm{polylog}}} n)$ time, and a $(1 + varepsilon)$-approximation algorithm that runs in $O((n + ksqrt{k}) {mathop{mathrm{polylog}}} n cdot logvarepsilon^{-1})$ time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in $O(min{n^2, rn^{3/2}} {mathop{mathrm{polylog}}} n)$ time.



rate research

Read More

74 - Sujoy Bhore , Rahul Jain 2021
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. For intersection graphs of Jordan regions, we show how to obtain a good vertex separator in a space-efficient manner and use it to solve the Reachability in polynomial time and $O(m^{1/2}log n)$ space, where $n$ is the number of Jordan regions, and $m$ is the total number of crossings among the regions. We use a similar approach for chordal graphs and obtain a polynomial-time and $O(m^{1/2}log n)$ space algorithm, where $n$ and $m$ are the number of vertices and edges, respectively. However, we use a more involved technique for unit contact disk graphs (penny graphs) and obtain a better algorithm. We show that for every $epsilon> 0$, there exists a polynomial-time algorithm that can solve Reachability in an $n$ vertex directed penny graph, using $O(n^{1/4+epsilon})$ space. We note that the method used to solve penny graphs does not extend naturally to the class of geometric intersection graphs that include arbitrary size cliques.
We give a quasipolynomial time algorithm for the graph matching problem (also known as noisy or robust graph isomorphism) on correlated random graphs. Specifically, for every $gamma>0$, we give a $n^{O(log n)}$ time algorithm that given a pair of $gamma$-correlated $G(n,p)$ graphs $G_0,G_1$ with average degree between $n^{varepsilon}$ and $n^{1/153}$ for $varepsilon = o(1)$, recovers the ground truth permutation $piin S_n$ that matches the vertices of $G_0$ to the vertices of $G_n$ in the way that minimizes the number of mismatched edges. We also give a recovery algorithm for a denser regime, and a polynomial-time algorithm for distinguishing between correlated and uncorrelated graphs. Prior work showed that recovery is information-theoretically possible in this model as long the average degree was at least $log n$, but sub-exponential time algorithms were only known in the dense case (i.e., for $p > n^{-o(1)}$). Moreover, Percolation Graph Matching, which is the most common heuristic for this problem, has been shown to require knowledge of $n^{Omega(1)}$ seeds (i.e., input/output pairs of the permutation $pi$) to succeed in this regime. In contrast our algorithms require no seed and succeed for $p$ which is as low as $n^{o(1)-1}$.
Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well known problems like Set Cover, Vertex Cover, Dominating Set and Facility Location to name a few. Recently there has been a lot of study on partial covering problems, a natural generalization of covering problems. Here, the goal is not to cover all the elements but to cover the specified number of elements with the minimum number of sets. In this paper we study partial covering problems in graphs in the realm of parameterized complexity. Classical (non-partial) version of all these problems have been intensively studied in planar graphs and in graphs excluding a fixed graph $H$ as a minor. However, the techniques developed for parameterized version of non-partial covering problems cannot be applied directly to their partial counterparts. The approach we use, to show that various partial covering problems are fixed parameter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph as a minor, is quite different from previously known techniques. The main idea behind our approach is the concept of implicit branching. We find implicit branching technique to be interesting on its own and believe that it can be used for some other problems.
We consider the problem of finding textit{semi-matching} in bipartite graphs which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted case. For the weighted case, we give an $O(nmlog n)$-time algorithm, where $n$ is the number of vertices and $m$ is the number of edges, by exploiting the geometric structure of the problem. This improves the classical $O(n^3)$ algorithms by Horn [Operations Research 1973] and Bruno, Coffman and Sethi [Communications of the ACM 1974]. For the unweighted case, the bound could be improved even further. We give a simple divide-and-conquer algorithm which runs in $O(sqrt{n}mlog n)$ time, improving two previous $O(nm)$-time algorithms by Abraham [MSc thesis, University of Glasgow 2003] and Harvey, Ladner, Lovasz and Tamir [WADS 2003 and Journal of Algorithms 2006]. We also extend this algorithm to solve the textit{Balance Edge Cover} problem in $O(sqrt{n}mlog n)$ time, improving the previous $O(nm)$-time algorithm by Harada, Ono, Sadakane and Yamashita [ISAAC 2008].
For over a decade now we have been witnessing the success of {em massive parallel computation} (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. One of the reasons for their success is the fact that these frameworks are able to accurately capture the nature of large-scale computation. In particular, compared to the classic distributed algorithms or PRAM models, these frameworks allow for much more local computation. The fundamental question that arises in this context is though: can we leverage this additional power to obtain even faster parallel algorithms? A prominent example here is the {em maximum matching} problem---one of the most classic graph problems. It is well known that in the PRAM model one can compute a 2-approximate maximum matching in $O(log{n})$ rounds. However, the exact complexity of this problem in the MPC framework is still far from understood. Lattanzi et al. showed that if each machine has $n^{1+Omega(1)}$ memory, this problem can also be solved $2$-approximately in a constant number of rounds. These techniques, as well as the approaches developed in the follow up work, seem though to get stuck in a fundamental way at roughly $O(log{n})$ rounds once we enter the near-linear memory regime. It is thus entirely possible that in this regime, which captures in particular the case of sparse graph computations, the best MPC round complexity matches what one can already get in the PRAM model, without the need to take advantage of the extra local computation power. In this paper, we finally refute that perplexing possibility. That is, we break the above $O(log n)$ round complexity bound even in the case of {em slightly sublinear} memory per machine. In fact, our improvement here is {em almost exponential}: we are able to deliver a $(2+epsilon)$-approximation to maximum matching, for any fixed constant $epsilon>0$, in $O((log log n)^2)$ rounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا