No Arabic abstract
Axion-like fields heavier than about $10^{-27}$eV are expected to oscillate in the radiation dominated epoch when the Hubble parameter drops below their mass. Considering the Chern-Simons coupling with a dark gauge boson, large amount of dark photons are produced during a short time interval through tachyonic resonance instability. The produced dark photons then source gravitational tensor modes leading to chiral gravitational waves. Through this process, one can indirectly probe a large parameter space of coupled axion-dark photon models. In this work we first find an analytic expression for the number density of the dark photons produced during the tachyonic resonance regime. Second, by using the saddle point approximation we find an analytic expression for the gravitational wave spectrum in terms of the mass, coupling and misalignment angle. Our analytic results can be used for the observational analysis of these types of scenarios.
In previous works we have derived a Running Vacuum Model (RVM) for a string Universe, which provides an effective description of the evolution of 4-dimensional string-inspired cosmologies from inflation till the present epoch. In the context of this stringy RVM version, it is assumed that the early Universe is characterised by purely gravitational degrees of freedom, from the massless gravitational string multiplet, including the antisymmetric tensor field. The latter plays an important role, since its dual gives rise to a `stiff gravitational-axion matter, which in turn couples to the gravitational anomaly terms, assumed to be non-trivial at early epochs. In the presence of primordial gravitational wave (GW) perturbations, such anomalous couplings lead to an RVM-like dynamical inflation, without external inflatons. We review here this framework and discuss potential scenarios for the generation of such primordial GW, among which the formation of unstable domain walls, which eventually collapse in a non-spherical-symmetric manner, giving rise to GW. We also remark that the same type of stiff axionic matter could provide, upon the generation of appropriate potentials during the post-inflationary eras, (part of) the Dark Matter (DM) in the Universe, which could well be ultralight, depending on the parameters of the string-inspired model. All in all, the new (stringy) mechanism for RVM-inflation preserves the basic structure of the original (and more phenomenological) RVM, as well as its main advantages: namely, a mechanism for graceful exit and for generating a huge amount of entropy capable of explaining the horizon problem. It also predicts axionic DM and the existence of mild dynamical Dark Energy (DE) of quintessence type in the present universe, both being living fossils of the inflationary stages of the cosmic evolution.
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to $10^{-21} , rm eV$.
In this paper, we investigate the Axion-like Particle inflation by applying the multi-nature inflation model, where the end of inflation is achieved through the phase transition (PT). The events of PT should not be less than $200$, which results in the free parameter $ngeq404$. Under the latest CMB restrictions, we found that the inflation energy is fixed at $10^{15} rm{GeV}$. Then, we deeply discussed the corresponding stochastic background of the primordial gravitational wave (GW) during inflation. We study the two kinds of $n$ cases, i.e., $n=404, 2000$. We observe that the magnitude of $n$ is negligible for the physical observations, such as $n_s$, $r$, $Lambda$, and $Omega_{rm{GW}}h^2$. In the low-frequency regions, the GW is dominated by the quantum fluctuations, and this GW can be detected by Decigo at $10^{-1}~rm{Hz}$. However, GW generated by PT dominates the high-frequency regions, which is expected to be detected by future 3DSR detector.
We propose a novel scenario of Dark Matter production naturally connected with generation of gravitational waves. Dark Matter is modelled as a real scalar, which interacts with the hot primordial plasma through a portal coupling to another scalar field. For a particular sign of the coupling, this system exhibits an inverse second order phase transition. The latter leads to an abundant Dark Matter production, even if the portal interaction is so weak that the freeze-in mechanism is inefficient. The model predicts domain wall formation in the Universe, long time before the inverse phase transition. These domain walls have a tension decreasing with time, and completely disappear at the inverse phase transition, so that the problem of overclosing the Universe is avoided. The domain wall network emits gravitational waves with characteristics defined by those of Dark Matter. In particular, the peak frequency of gravitational waves is determined by the portal coupling constant, and falls in the observable range for currently planned gravitational wave detectors.
Global cosmic strings are generically predicted in particle physics beyond the Standard Model, e.g., a post-inflationary global $U(1)$ symmetry breaking which may associate with axion-like dark matter. We demonstrate that although subdominant to Goldstone emission, gravitational waves (GWs) radiated from global strings can be observable with current or future GW detectors. The frequency spectrum of such GWs is also shown to be a powerful tool to probe the Hubble expansion rate of the Universe at times prior to the Big Bang nucleosynthesis where the standard cosmology has yet to be tested.