No Arabic abstract
Efficiency of search for randomly distributed targets is a prominent problem in many branches of the sciences. For the stochastic process of Levy walks, a specific range of optimal efficiencies was suggested under variation of search intrinsic and extrinsic environmental parameters. In this article, we study fractional Brownian motion as a search process, which under parameter variation generates all three basic types of diffusion, from sub- to normal to superdiffusion. In contrast to Levy walks, fractional Brownian motion defines a Gaussian stochastic process with power law memory yielding anti-persistent, respectively persistent motion. Computer simulations of search by time-discrete fractional Brownian motion in a uniformly random distribution of targets show that maximising search efficiencies sensitively depends on the definition of efficiency, the variation of both intrinsic and extrinsic parameters, the perception of targets, the type of targets, whether to detect only one or many of them, and the choice of boundary conditions. In our simulations we find that different search scenarios favour different modes of motion for optimising search success, defying a universality across all search situations. Some of our numerical results are explained by a simple analytical model. Having demonstrated that search by fractional Brownian motion is a truly complex process, we propose an over-arching conceptual framework based on classifying different search scenarios. This approach incorporates search optimisation by Levy walks as a special case.
We study statistical properties of the process $Y(t)$ of a passive advection by quenched random layered flows in situations when the inter-layer transfer is governed by a fractional Brownian motion $X(t)$ with the Hurst index $H in (0,1)$. We show that the disorder-averaged mean-squared displacement of the passive advection grows in the large time $t$ limit in proportion to $t^{2 - H}$, which defines a family of anomalous super-diffusions. We evaluate the disorder-averaged Wigner-Ville spectrum of the advection process $Y(t)$ and demonstrate that it has a rather unusual power-law form $1/f^{3 - H}$ with a characteristic exponent which exceed the value $2$. Our results also suggest that sample-to-sample fluctuations of the spectrum can be very important.
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type. In addition we find the winding number distribution of fractal time process, i.e., time fractional Fokker-Planck equation, in the presence of finite size winding center.
A combined dynamics consisting of Brownian motion and Levy flights is exhibited by a variety of biological systems performing search processes. Assessing the search reliability of ever locating the target and the search efficiency of doing so economically of such dynamics thus poses an important problem. Here we model this dynamics by a one-dimensional fractional Fokker-Planck equation combining unbiased Brownian motion and Levy flights. By solving this equation both analytically and numerically we show that the superposition of recurrent Brownian motion and Levy flights with stable exponent $alpha<1$, by itself implying zero probability of hitting a point on a line, lead to transient motion with finite probability of hitting any point on the line. We present results for the exact dependence of the values of both the search reliability and the search efficiency on the distance between the starting and target positions as well as the choice of the scaling exponent $alpha$ of the Levy flight component.
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation time the power-law correlations between the increments of fractional Brownian motion. Here, we investigate such tempered fractional Brownian motion confined to a finite interval by reflecting walls. Specifically, we explore how the tempering of the long-time correlations affects the strong accumulation and depletion of particles near reflecting boundaries recently discovered for untempered fractional Brownian motion. We find that exponential tempering introduces a characteristic size for the accumulation and depletion zones but does not affect the functional form of the probability density close to the wall. In contrast, power-law tempering leads to more complex behavior that differs between the superdiffusive and subdiffusive cases.
Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponent $Hin [0,1]$, generalising standard Brownian motion to account for anomalous diffusion. Functionals of this process are important for practical applications as a standard reference point for non-equilibrium dynamics. We describe a perturbation expansion allowing us to evaluate many non-trivial observables analytically: We generalize the celebrated three arcsine-laws of standard Brownian motion. The functionals are: (i) the fraction of time the process remains positive, (ii) the time when the process last visits the origin, and (iii) the time when it achieves its maximum (or minimum). We derive expressions for the probability of these three functionals as an expansion in $epsilon = H-tfrac{1}{2}$, up to second order. We find that the three probabilities are different, except for $H=tfrac{1}{2}$ where they coincide. Our results are confirmed to high precision by numerical simulations.