No Arabic abstract
We previously reported on the complex permittivity and dc conductivity of waste-activated sludge. The measurements, spanning a frequency range of 3 MHz to 40 GHz, were made using an open-ended coaxial transmission line. Although this technique is well established in the literature, we found that it was necessary to combine methods from several papers to use the open-ended coaxial probe to reliably characterize biological samples having a high dc conductivity. Here, we provide a set of detailed and practical guidelines that can be used to determine the permittivity and conductivity of biological samples over a broad frequency range. Due to the electrode polarization effect, low frequency measurements of conducting samples require corrections to extract the intrinsic electrical properties. We describe one practical correction scheme and verify its reliability using a control sample.
Metglas 2705M is a low-cost commercially-available, high-permeability Cobalt-based magnetic alloy, provided as a 5.08-cm wide and 20.3-$mu$m thick ribbon foil. We present an optimized construction technique for single-shell, large-scale (human-size), thin, open-ended cylindrical Metglas magnetic shields. The measured DC axial and transverse magnetic shielding factors of our 0.61-m diameter and 1.83-m long shields in the Earths magnetic field were 267 and 1500, for material thicknesses of only 122 $mu$m (i.e., 6 foil layers). The axial shielding performance of our single-shell Metglas magnetic shields, obtained without the use of magnetic shaking techniques, is comparable to the performance of significantly thicker, multiple-shell, open-ended Metglas magnetic shields in comparable-magnitude, low-frequency applied external fields reported previously in the literature.
The Personal Alert Safety System (PASS) is an alarm signal device carried by firefighters to help rescuers locate and extricate downed firefighters. A fire creates temperature gradients and inhomogeneous time-varying temperature, density, and flow fields that modify the acoustic properties of a room. To understand the effect of the fire on an alarm signal, experimental measurements of head-related transfer functions (HRTF) in a room with fire are presented in time and frequency domains. The results show that low frequency (<1000 Hz) modes in the HRTF increase in frequency and higher frequency modal structure weakens and becomes unstable in time. In the time domain, the time difference of arrival between the ears changes and becomes unstable over time. Both these effects could impact alarm signal detection and localization. Received level of narrowband tones is presented that shows the fire makes the received level of a source vary by >10 dB. All these effects could impact the detection and localization of the PASS alarm, and life safety consequences.
We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated $MoS_2$ field effect transistors and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.
Neutron imaging is one of the key technologies for non-destructive transmission testing. Recent progress in the development of intensive neutron sources allows us to perform energy-resolved neutron imaging with high spatial resolution. Substantial efforts have been devoted to developing a high spatial and temporal resolution neutron imager. We have been developing a neutron imager aiming at conducting high spatial and temporal resolution imaging based on a delay-line neutron detector, called the current-biased kinetic-inductance detector, with a conversion layer $^{10}$B. The detector allowed us to obtain a neutron transmission image with four signal readout lines. Herein, we expanded the sensor active area, and improved the spatial resolution of the detector. We examined the capability of high spatial resolution neutron imaging over the sensor active area of 15 $times$ 15 mm$^2$ for various samples, including biological and metal ones. We also demonstrated an energy-resolved neutron image in which stainless-steel specimens were discriminating of other specimens with the aid of the Bragg edge transmission.
We report a weighing metrology experiment of a single silica microsphere optically trapped and immersed in air. Based on fluctuations about thermal equilibrium, three different mass measurements are investigated, each arising from one of two principle methods. The first method is based on spectral analysis and enables simultaneous extraction of various system parameters. Additionally, the spectral method yields a mass measurement with systematic relative uncertainty of 3.0% in 3~s and statistical relative uncertainty of 0.9% across several trapping laser powers. Parameter values learned from the spectral method serve as input, or a calibration step, for the second method based on the equipartition theorem. The equipartition method gives two additional mass measurements with systematic and statistical relative uncertainties slightly larger than the ones obtained in the spectral method, but over a time interval 10 times shorter. Our mass estimates, which are obtained in a scenario of strong environmental coupling, have uncertainties comparable to ones obtained in force-driven metrology experiments with nanospheres in vacuum. Moreover, knowing the microspheres mass accurately and precisely will enable air-based sensing applications.