No Arabic abstract
In several experiments involving material background, it has been observed that the Chu, Einstein-Laub and Ampere formulations of optical force lead to either different optical forces or wrong total optical force. In order to identify the exact reason behind such significant disagreements, we investigate the optical force in a number of tractor beam and lateral force experiments. We demonstrate that the modified Einstein-Laub or modified Chu formulations, obtained from two mathematical consistency conditions of force calculation, give the time-averaged force that agrees with the experiments. We consider both the chiral and achiral objects embedded in complex material backgrounds. Though the distinct formulations of optical force have been made mathematically equivalent in this work; the aspect of physical consistency of these distinct optical force formulations have also been investigated. It is known that the theory of Minkowski suggests zero bulk force inside a lossless object for which we still do not have any experimental verification. In contrast, both modified Einstein-Laub and modified Chu force formulations suggest non-zero bulk force inside a lossless object. Hence, for a future resolution of this discrepancy, we also suggest a possible experiment to investigate the bulk force and to check the validity of these distinct formulations.
Expanded porphyrin-based (Hexaphyrins) sensitizers are promising due to their excellent light harvesting feature in dye-sensitized solar cell (DSSC). We calculated the low-lying excitations of expanded porphyrins (EPs) as hexaphyrin and core modified hexaphyrin structures using Time-Dependent Density Functional Theory. Our calculation showed the EPs (both hexaphyrin and core modified hexaphyrin) have broad range of absorption band suitable for harvesting the visible and near infrared region of solar spectrum. All EPs studied here satisfy the energy condition of singlet fission (SF). SF is the process in which the theoretical limit of Shockley-Quiesser (SQ) (33%) can be overcome in single junction solar cell. The non-linear optical properties like first hyper polarizability $beta$ and second order hyper polarizability $gamma$ were calculated using coupled perturbed Hartree-Fock approach. From the second order NLO properties we carried out degenerate four wave mixing (DFWM) component ($gamma^{(2)}(-omega;omega,omega,-omega$)) and finally quadratic non linear refractive indices of these EPs are calculated. Calculation showed EPs are promising as organic dye for the opto-electronic applications and useful for high efficiency DSSC and also useful for potential NLO materials as their hyper polarizabilities showed higher order non linearities.
Variations on the notions of Reedy model structures and projective model structures on categories of diagrams in a model category are introduced. These allow one to choose only a subset of the entries when defining weak equivalences, or to use different model categories at different entries of the diagrams. As a result, a bisimplicial model category that can be used to recover the algebraic K-theory for any Waldhausen subcategory of a model category is produced.
Two formulations of the Lorentz law of force in classical electrodynamics yield identical results for the total force (and total torque) of radiation on a solid object. The object may be surrounded by the free space or immersed in a transparent dielectric medium such as a liquid. We discuss the relation between these two formulations and extend the proof of their equivalence to the case of solid objects immersed in a transparent medium.
Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporating new doped materials in order to realize active optical fibers for constructing lasers and amplifiers.
The statistics of dark matter halos is an essential component of understanding the nonlinear evolution in modified gravity cosmology. Based on a series of modified gravity N-body simulations, we investigate the halo mass function, concentration and bias. We model the impact of modified gravity by a single parameter zeta, which determines the enhancement of particle acceleration with respect to GR, given the identical mass distribution (zeta=1 in GR). We select snapshot redshifts such that the linear matter power spectra of different gravity models are identical, in order to isolate the impact of gravity beyond modifying the linear growth rate. At the baseline redshift corresponding to z_S=1.2 in the standard Lambda CDM, for a 10% deviation from GR(|zeta-1|=0.1), the measured halo mass function can differ by about 5-10%, the halo concentration by about 10-20%, while the halo bias differs significantly less. These results demonstrate that the halo mass function and/or the halo concentration are sensitive to the nature of gravity and may be used to make interesting constraints along this line.