No Arabic abstract
Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporating new doped materials in order to realize active optical fibers for constructing lasers and amplifiers.
A technique has been developed for depositing diamond crystals on the endfaces of optical fibers and capturing the fluorescence generated by optically active defects in the diamond into the fiber. This letter details the diamond growth on optical fibers and transmission of fluorescence through the fiber from the nitrogen-vacancy (N-V) color center in diamond. Control of the concentration of defects incorporated during the chemical vapor deposition (CVD) growth process is also demonstrated. These are the first critical steps in developing a fiber coupled single photon source based on optically active defect centers in diamond.
Fabrication of single nickel-nitrogen (NE8) defect centers in diamond by chemical vapor deposition is demonstrated. Under continuous-wave 745 nm laser excitation single defects were induced to emit single photon pulses at 797 nm with a linewidth of 1.5 nm at room temperature. Photon antibunching of single centers was demonstrated using a Hanbury-Brown and Twiss interferometer. Confocal images revealed approximately 10^6 optically active sites/cm^2 in the synthesized films. The fabrication of an NE8 based single photon source in synthetic diamond is important for fiber based quantum cryptography. It can also be used as an ideal point-like source for near-field optical microscopy.
Chemical vapor deposition (CVD) allows growing transition metal dichalcogenides (TMDs) over large surface areas on inexpensive substrates. In this work, we correlate the structural quality of CVD grown MoS$_2$ monolayers (MLs) on SiO$_2$/Si wafers studied by high-resolution transmission electron microscopy (HRTEM) with high optical quality revealed in optical emission and absorption from cryogenic to ambient temperatures. We determine a defect concentration of the order of 10$^{13}$ cm$^{-2}$ for our samples with HRTEM. To have access to the intrinsic optical quality of the MLs, we remove the MLs from the SiO$_2$ growth substrate and encapsulate them in hBN flakes with low defect density, to reduce the detrimental impact of dielectric disorder. We show optical transition linewidth of 5 meV at low temperature (T=4 K) for the free excitons in emission and absorption. This is comparable to the best ML samples obtained by mechanical exfoliation of bulk material. The CVD grown MoS$_2$ ML photoluminescence is dominated by free excitons and not defects even at low temperature. High optical quality of the samples is further confirmed by the observation of excited exciton states of the Rydberg series. We optically generate valley coherence and valley polarization in our CVD grown MoS$_2$ layers, showing the possibility for studying spin and valley physics in CVD samples of large surface area.
In this work, the single-component Cu metallic glass was fabricated by the physical vapor deposition on the Zr (0001) crystal substrate at 100 K using the classical molecular dynamic simulation. The same deposition process was performed on the Cu (1 0 0) and Ni (1 0 0) crystal substrate for comparison, only the Cu crystal deposited layer with the fcc structure can be obtained. When depositing the Cu atoms on the Zr substrate at 300 K, the crystal structure was formed, which indicates that except the suitable substrate, low temperature is also a key factor for the amorphous structure formation. The Cu liquid quenching from 2000 K to 100 K were also simulated with the cooling rate 1012 K/s to form the Cu glass film in this work. The Cu metallic glass from the two different processes (physical vapor deposition and rapid thermal quenching from liquid) revealed the same radial distribution function and X-ray diffraction pattern, but the different microstructure from the coordination number and Voronoi tessellation analysis.
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. The first part of this study reported the origin of loss in nanodiamond-doped glass and impact of glass fabrication conditions. Here, we report the fabrication of nanodiamond-doped tellurite fibers with significantly reduced loss in the visible through further understanding of the impact of glass fabrication conditions on the interaction of the glass melt with the embedded nanodiamond. We fabricated tellurite fibers containing nanodiamond in concentrations up to 0.7 ppm-weight, while reducing the loss by more than an order of magnitude down to 10 dB/m at 600-800 nm.