Do you want to publish a course? Click here

In-situ formation of 2D-TiCx in Cu-Ti2AlC composites: an interface reaction study

202   0   0.0 ( 0 )
 Added by Khushbu Dash
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present a concept to fabricate copper based Ti2AlC MAX phase composite focusing on the processing method and the reaction which takes place at the matrix-reinforcement interface to yield 2D TiCx. Copper was reinforced with Ti2AlC (agglomerate size ~40 micron) phase and sintered in vacuum by pressure-less sintering. The interface of consolidated samples was investigated using transmission electron microscopy (TEM) to reveal the microstructural details. In the due course of consolidation of Cu-Ti2AlC; the formation of 2D TiCx from the reaction between Cu and Ti2AlC by forming solid solution between Cu and Al was facilitated. The reaction between Cu and Ti2AlC has been elaborated and analyzed in the light of corroborated results. Wavelength dispersive spectroscopy (WDS) throws light on the elemental distribution at the site of interfacial reaction. This investigation elaborates a proof of concept to process an in-situ 2D TiCx reinforced Cu metal matrix composite (MMC).

rate research

Read More

We present a detailed study of the interface morphology of an electro-deposited (ED) Ni/Cu bilayer film by using off-specular (diffuse) neutron reflectivity technique and Atomic Force Microscopy (AFM). The Ni/Cu bilayer has been electro-deposited on seed layers of Ti/Cu. These two seed layers were deposited by magnetron sputtering. The depth profile of density in the sample has been obtained from specular neutron reflectivity data. AFM image of the air-film interface shows that the surface is covered by globular islands of different sizes. The AFM height distribution of the surface clearly shows two peaks [Fig. 3] and the relief structure (islands) on the surface in the film can be treated as a quasi-two-level random rough surface structure. We have demonstrated that the detailed morphology of air-film interfaces, the quasi-two level surface structure as well as morphology of the buried interfaces can be obtained from off-specular neutron reflectivity data. We have shown from AFM and off-specular neutron reflectivity data that the morphologies of electro-deposited surface is distinctly different from that of sputter-deposited interface in this sample. To the best of our knowledge this is the first attempt to microscopically quantify the differences in morphologies of metallic interfaces deposited by two different techniques viz. electro-deposition and sputtering.
Work function-mediated charge transfer in graphene/$alpha$-RuCl$_3$ heterostructures has been proposed as a strategy for generating highly-doped 2D interfaces. In this geometry, graphene should become sufficiently doped to host surface and edge plasmon-polaritons (SPPs and EPPs, respectively). Characterization of the SPP and EPP behavior as a function of frequency and temperature can be used to simultaneously probe the magnitude of interlayer charge transfer while extracting the optical response of the interfacial doped $alpha$-RuCl$_3$. We accomplish this using scanning near-field optical microscopy (SNOM) in conjunction with first-principles DFT calculations. This reveals massive interlayer charge transfer (2.7 $times$ 10$^{13}$ cm$^{-2}$) and enhanced optical conductivity in $alpha$-RuCl$_3$ as a result of significant electron doping. Our results provide a general strategy for generating highly-doped plasmonic interfaces in the 2D limit in a scanning probe-accessible geometry without need of an electrostatic gate.
The high-mobility conducting interface (CI) between LaAlO_{3}(LAO) and SrTiO_{3}(STO) has revealed many fascinating phenomena, including exotic magnetism and superconductivity. But, the formation mechanism of the CI has not been conclusively explained. Here, using in situ angle-resolved photoemission spectroscopy, we elucidated the mechanisms for the CI formation. In as-grown samples, we observed a built-in potential (V_{bi}) proportional to the polar LAO thickness starting from the first unit cell (UC) with CI formation appearing above 3 UCs. However, we found that the V bi is removed by synchrotron ultraviolet (UV)-irradiation; The built-in potential is recovered by oxygen gas (O_{2}(g))-exposure. Furthermore, after UV-irradiation, the CI appears even below 3UC of LAO. Our results demonstrate not only the V_{bi}-driven CI formation in asgrown LAO/STO, but also a new route to control of the interface state by UV lithographic patterning or other surface modification.
In this study, in situ quasi-elastic neutron scattering (QENS) has been employed to probe the water dynamics and reaction mechanisms occurring during the formation of NaOH- and Na2SiO3-activated slags, an important class of low-CO2 cements, in conjunction with isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR) analysis and N2 sorption measurements. We show that the single ICC reaction peak in the NaOH-activated slag is accompanied with a transformation of free water to bound water (from QENS analysis), which directly signals formation of a sodium-containing aluminum-substituted calcium-silicate-hydrate (C-(N)-A-S-H) gel, as confirmed by FTIR. In contrast, the Na2SiO3-activated slag sample exhibits two distinct reaction peaks in the ICC data, where the first reaction peak is associated with conversion of constrained water to bound and free water, and the second peak is accompanied with conversion of free water to bound and constrained water (from QENS analysis). The second conversion is attributed to formation of the main reaction product (i.e., C-(N)-A-S-H gel) as confirmed by FTIR and N2 sorption data. Analysis of the QENS, FTIR and N2 sorption data together with thermodynamic information from the literature explicitly shows that the first reaction peak is associated with the formation of an initial gel (similar to C-(N)-A-S-H gel) that is governed by the Na+ ions and silicate species in Na2SiO3 solution and the dissolved Ca/Al species from slag. Hence, this study exemplifies the power of in situ QENS, when combined with laboratory-based characterization techniques, in elucidating the water dynamics and associated chemical mechanisms occurring in complex materials, and has provided important mechanistic insight on the early-age reactions occurring during formation of two alkali-activated slags.
100 - R. van Gastel 2001
We have used the indium/copper surface alloy to study the dynamics of surface vacancies on the Cu(001) surface. Individual indium atoms that are embedded within the first layer of the crystal, are used as probes to detect the rapid diffusion of surface vacancies. STM measurements show that these indium atoms make multi-lattice-spacing jumps separated by long time intervals. Temperature dependent waiting time distributions show that the creation and diffusion of thermal vacancies form an Arrhenius type process with individual long jumps being caused by one vacancy only. The length of the long jumps is shown to depend on the specific location of the indium atom and is directly related to the lifetime of vacancies at these sites on the surface. This observation is used to expose the role of step edges as emitting and absorbing boundaries for vacancies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا