Do you want to publish a course? Click here

Inertial Sensing Meets Artificial Intelligence: Opportunity or Challenge?

90   0   0.0 ( 0 )
 Added by You Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The inertial navigation system (INS) has been widely used to provide self-contained and continuous motion estimation in intelligent transportation systems. Recently, the emergence of chip-level inertial sensors has expanded the relevant applications from positioning, navigation, and mobile mapping to location-based services, unmanned systems, and transportation big data. Meanwhile, benefit from the emergence of big data and the improvement of algorithms and computing power, artificial intelligence (AI) has become a consensus tool that has been successfully applied in various fields. This article reviews the research on using AI technology to enhance inertial sensing from various aspects, including sensor design and selection, calibration and error modeling, navigation and motion-sensing algorithms, multi-sensor information fusion, system evaluation, and practical application. Based on the over 30 representative articles selected from the nearly 300 related publications, this article summarizes the state of the art, advantages, and challenges on each aspect. Finally, it summarizes nine advantages and nine challenges of AI-enhanced inertial sensing and then points out future research directions.



rate research

Read More

Realizing edge intelligence consists of sensing, communication, training, and inference stages. Conventionally, the sensing and communication stages are executed sequentially, which results in excessive amount of dataset generation and uploading time. This paper proposes to accelerate edge intelligence via integrated sensing and communication (ISAC). As such, the sensing and communication stages are merged so as to make the best use of the wireless signals for the dual purpose of dataset generation and uploading. However, ISAC also introduces additional interference between sensing and communication functionalities. To address this challenge, this paper proposes a classification error minimization formulation to design the ISAC beamforming and time allocation. Globally optimal solution is derived via the rank-1 guaranteed semidefinite relaxation, and performance analysis is performed to quantify the ISAC gain. Simulation results are provided to verify the effectiveness of the proposed ISAC scheme. Interestingly, it is found that when the sensing time dominates the communication time, ISAC is always beneficial. However, when the communication time dominates, the edge intelligence with ISAC scheme may not be better than that with the conventional scheme, since ISAC introduces harmful interference between the sensing and communication signals.
In the NeurIPS 2018 Artificial Intelligence for Prosthetics challenge, participants were tasked with building a controller for a musculoskeletal model with a goal of matching a given time-varying velocity vector. Top participants were invited to describe their algorithms. In this work, we describe the challenge and present thirteen solutions that used deep reinforcement learning approaches. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each team implemented different modifications of the known algorithms by, for example, dividing the task into subtasks, learning low-level control, or by incorporating expert knowledge and using imitation learning.
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with AI systems. There is a vital need for research in AI and Cooperation that seeks to understand the ways in which systems of AIs and systems of AIs with people can engender cooperative behavior. Trust in AI is also key: trust that is intrinsic and trust that can only be earned over time. Here we use the term AI in its broadest sense, as employed by the recent 20-Year Community Roadmap for AI Research (Gil and Selman, 2019), including but certainly not limited to, recent advances in deep learning. With success, cooperation between humans and AIs can build society just as human-human cooperation has. Whether coming from an intrinsic willingness to be helpful, or driven through self-interest, human societies have grown strong and the human species has found success through cooperation. We cooperate in the small -- as family units, with neighbors, with co-workers, with strangers -- and in the large as a global community that seeks cooperative outcomes around questions of commerce, climate change, and disarmament. Cooperation has evolved in nature also, in cells and among animals. While many cases involving cooperation between humans and AIs will be asymmetric, with the human ultimately in control, AI systems are growing so complex that, even today, it is impossible for the human to fully comprehend their reasoning, recommendations, and actions when functioning simply as passive observers.
Location information claimed by devices will play an ever-increasing role in future wireless networks such as 5G, the Internet of Things (IoT). Against this background, the verification of such claimed location information will be an issue of growing importance. A formal information-theoretic Location Verification System (LVS) can address this issue to some extent, but such a system usually operates within the limits of idealistic assumptions on a-priori information on the proportion of genuine users in the field. In this work we address this critical limitation by using a Neural Network (NN) showing how such a NN based LVS is capable of efficiently functioning even when the proportion of genuine users is completely unknown a-priori. We demonstrate the improved performance of this new form of LVS based on Time of Arrival measurements from multiple verifying base stations within the context of vehicular networks, quantifying how our NN-LVS outperforms the stand-alone information-theoretic LVS in a range of anticipated real-world conditions. We also show the efficient performance for the NN-LVS when the users signals have added Non-Line-of-Site (NLoS) bias in them. This new LVS can be applied to a range of location-centric applications within the domain of the IoT.
The Internet of Things (IoT) and edge computing applications aim to support a variety of societal needs, including the global pandemic situation that the entire world is currently experiencing and responses to natural disasters. The need for real-time interactive applications such as immersive video conferencing, augmented/virtual reality, and autonomous vehicles, in education, healthcare, disaster recovery and other domains, has never been higher. At the same time, there have been recent technological breakthroughs in highly relevant fields such as artificial intelligence (AI)/machine learning (ML), advanced communication systems (5G and beyond), privacy-preserving computations, and hardware accelerators. 5G mobile communication networks increase communication capacity, reduce transmission latency and error, and save energy -- capabilities that are essential for new applications. The envisioned future 6G technology will integrate many more technologies, including for example visible light communication, to support groundbreaking applications, such as holographic communications and high precision manufacturing. Many of these applications require computations and analytics close to application end-points: that is, at the edge of the network, rather than in a centralized cloud. AI techniques applied at the edge have tremendous potential both to power new applications and to need more efficient operation of edge infrastructure. However, it is critical to understand where to deploy AI systems within complex ecosystems consisting of advanced applications and the specific real-time requirements towards AI systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا