Do you want to publish a course? Click here

SoK: The Faults in our ASRs: An Overview of Attacks against Automatic Speech Recognition and Speaker Identification Systems

60   0   0.0 ( 0 )
 Added by Hadi Abdullah
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Speech and speaker recognition systems are employed in a variety of applications, from personal assistants to telephony surveillance and biometric authentication. The wide deployment of these systems has been made possible by the improved accuracy in neural networks. Like other systems based on neural networks, recent research has demonstrated that speech and speaker recognition systems are vulnerable to attacks using manipulated inputs. However, as we demonstrate in this paper, the end-to-end architecture of speech and speaker systems and the nature of their inputs make attacks and defenses against them substantially different than those in the image space. We demonstrate this first by systematizing existing research in this space and providing a taxonomy through which the community can evaluate future work. We then demonstrate experimentally that attacks against these models almost universally fail to transfer. In so doing, we argue that substantial additional work is required to provide adequate mitigations in this space.



rate research

Read More

Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks.
With the wide use of Automatic Speech Recognition (ASR) in applications such as human machine interaction, simultaneous interpretation, audio transcription, etc., its security protection becomes increasingly important. Although recent studies have brought to light the weaknesses of popular ASR systems that enable out-of-band signal attack, adversarial attack, etc., and further proposed various remedies (signal smoothing, adversarial training, etc.), a systematic understanding of ASR security (both attacks and defenses) is still missing, especially on how realistic such threats are and how general existing protection could be. In this paper, we present our systematization of knowledge for ASR security and provide a comprehensive taxonomy for existing work based on a modularized workflow. More importantly, we align the research in this domain with that on security in Image Recognition System (IRS), which has been extensively studied, using the domain knowledge in the latter to help understand where we stand in the former. Generally, both IRS and ASR are perceptual systems. Their similarities allow us to systematically study existing literature in ASR security based on the spectrum of attacks and defense solutions proposed for IRS, and pinpoint the directions of more advanced attacks and the directions potentially leading to more effective protection in ASR. In contrast, their differences, especially the complexity of ASR compared with IRS, help us learn unique challenges and opportunities in ASR security. Particularly, our experimental study shows that transfer learning across ASR models is feasible, even in the absence of knowledge about models (even their types) and training data.
Adversarial attacks have become a major threat for machine learning applications. There is a growing interest in studying these attacks in the audio domain, e.g, speech and speaker recognition; and find defenses against them. In this work, we focus on using representation learning to classify/detect attacks w.r.t. the attack algorithm, threat model or signal-to-adversarial-noise ratio. We found that common attacks in the literature can be classified with accuracies as high as 90%. Also, representations trained to classify attacks against speaker identification can be used also to classify attacks against speaker verification and speech recognition. We also tested an attack verification task, where we need to decide whether two speech utterances contain the same attack. We observed that our models did not generalize well to attack algorithms not included in the attack representation model training. Motivated by this, we evaluated an unknown attack detection task. We were able to detect unknown attacks with equal error rates of about 19%, which is promising.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data ($e.g.$, data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers ($i.e.$, pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at url{https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification}.
135 - Zirui Xu , Fuxun Yu , Chenchen Liu 2018
Nowadays, machine learning based Automatic Speech Recognition (ASR) technique has widely spread in smartphones, home devices, and public facilities. As convenient as this technology can be, a considerable security issue also raises -- the users speech content might be exposed to malicious ASR monitoring and cause severe privacy leakage. In this work, we propose HASP -- a high-performance security enhancement approach to solve this security issue on mobile devices. Leveraging ASR systems vulnerability to the adversarial examples, HASP is designed to cast human imperceptible adversarial noises to real-time speech and effectively perturb malicious ASR monitoring by increasing the Word Error Rate (WER). To enhance the practical performance on mobile devices, HASP is also optimized for effective adaptation to the human speech characteristics, environmental noises, and mobile computation scenarios. The experiments show that HASP can achieve optimal real-time security enhancement: it can lead an average WER of 84.55% for perturbing the malicious ASR monitoring, and the data processing speed is 15x to 40x faster compared to the state-of-the-art methods. Moreover, HASP can effectively perturb various ASR systems, demonstrating a strong transferability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا