Do you want to publish a course? Click here

Electron pairing in the Hubbard model as a result of on-site repulsion fluctuations

69   0   0.0 ( 0 )
 Added by Igor Karnaukhov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We focus our quantitative analysis on the stability of the insulator state in the Hubbard model at a half-filling. Taking into account large-scale fluctuations (with a long relaxation time) of the on-site Coulomb repulsion, we consider the possibility of realizing a stabile state which is characterized by pairing for electrons. The pairing mechanism is as follows: due to fluctuations of on-site repulsion of electrons, holes, as excited states, are formed electron pairs. The bare values of on-site Coulomb repulsion and its fluctuations, for which the states with electron pairing are stable, are calculated. The proposed pairing mechanism is to some extent similar to the formation of a localized moment in the Wolf model. The calculations were performed for the chain, as well as square and cubic lattices.

rate research

Read More

The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime $omega < T$ of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.
An exact study of charge-spin separation, pairing fluctuations and pseudogaps is carried out by combining the analytical eigenvalues of the four-site Hubbard clusters with the grand canonical and canonical ensemble approaches in a multidimensional parameter space of temperature (T), magnetic field (h), on-site interaction (U) and chemical potential. Our results, near the average number of electrons <N>=3, strongly suggest the existence of a critical parameter U_{c}(T) for the localization of electrons and a particle-hole binding (positive) gap at U>U_{c}(T), with a zero temperature quantum critical point, U_{c}(0)=4.584. For U<U_{c}(T), particle-particle pair binding is found with a (positive) pairing gap. The ground state degeneracy is lifted at U>U_c(T) and the cluster becomes a Mott-Hubbard like insulator due to the presence of energy gaps at all (allowed) integer numbers of electrons. In contrast, for U< U_c(T), we find an electron pair binding instability at finite temperature near <N>=3, which manifests a possible pairing mechanism, a precursor to superconductivity in small clusters. In addition, the resulting phase diagram consisting of charge and spin pseudogaps, antiferromagnetic correlations, hole pairing with competing hole-rich (<N>=2), hole-poor (<N>=4) and magnetic (<N>=3) regions in the ensemble of clusters near 1/8 filling closely resembles the phase diagrams and inhomogeneous phase separation recently found in the family of doped high T_c cuprates.
A simple effective model of charge ordered and (or) magnetically ordered insulators is studied. The tight binding Hamiltonian analyzed consists of (i) the effective on-site interaction U, (ii) the intersite density-density interaction W and (iii) intersite magnetic exchange interaction Jz (or Jxy) between nearest-neighbors. The intersite interaction are treated within the mean-field approximation. One shows that the systems considered can exhibit very interesting multicritical behaviors, including among others bicritical, tricritical, tetracritical and critical end points. The analysis of the model has been performed for an arbitrary electron concentration as well as an arbitrary chemical potential in the limit of strong on-site repulsion. The phase diagrams obtained in such a case are shown to consist of at least 9 different states, including four homogenous phases: nonordered (NO), ferromagnetic (F), charge ordered (CO), ferrimagnetic (intermediate, I) and five types of phase separation: NO-NO, F-NO, F-F, CO-F, CO-I.
By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairing mechanism, characterized by staggered pair-density-wave oscillations in the off-diagonal long-range correlation, and is absent in the ground-state phase diagram; i.e., it is induced neither by a change of the effective interaction of the Hubbard model nor by simple photocarrier doping. Because of the selection rule, we show that the nonlinear optical response is essential to increase the number of $eta$ pairs and thus enhance the superconducting correlation in the photoexcited state. Our finding demonstrates that nonequilibrium many-body dynamics is an alternative pathway to access a new exotic quantum state that is absent in the ground-state phase diagram and also provides an alternative mechanism for enhancing superconductivity.
77 - Igor N.Karnaukhov 2020
We provide analytical and numerical solution of the two band fermion model with on-site Coulomb at half filling. In limiting cases for generate bands and one flat band, the model reduces to the Hubbard and Falicov-Kimball models, respectively. We have shown that the insulator state emerges at half filling due to hybridization of fermions of different bands with momenta k and k$+pi$. Such hybridization breaks the conservation of the number of particles in each band, the Mott transition is a consequence of spontaneous symmetry breaking. A gap in the spectrum is calculated depending on the magnitude of on-site Coulomb repulsion and the width of the band for the chain, as well as for square and cubic lattices. The proposed approach allows us to describe the formation of the gap in the fermion spectra in the Hubbard and Falicov-Kimball models within the framework of the same mechanism for an arbitrary dimension of the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا