No Arabic abstract
Skyrmions, spin spirals, and other chiral magnetization structures developing in materials with intrinsic Dzyaloshinsky-Moriya Interaction display unique properties that have been the subject of intense research in thin-film geometries. Here we study the formation of three-dimensional chiral magnetization structures in FeGe nanospheres by means of micromagnetic finite-element simulations. In spite of the deep sub-micron particle size, we find a surprisingly large number of distinct equilibrium states, namely, helical, meron, skyrmion, chiral-bobber and quasi-saturation state. The distribution of these states is summarized in a phase diagram displaying the ground state as a function of the external field and particle radius. This unusual multiplicity of possible magnetization states in individual nanoparticles could be a useful feature for multi-state memory devices. We also show that the magneto-dipolar interaction is almost negligible in these systems, which suggests that the particles could be arranged at high density without experiencing unwanted coupling.
The ability to experimentally map the three-dimensional structure and dynamics in bulk and patterned three-dimensional ferromagnets is essential both for understanding fundamental micromagnetic processes, as well as for investigating technologically-relevant micromagnets whose functions are connected to the presence and dynamics of fundamental micromagnetic structures, such as domain walls and vortices. Here, we demonstrate time-resolved magnetic laminography, a technique which offers access to the temporal evolution of a complex three-dimensional magnetic structure with nanoscale resolution. We image the dynamics of the complex three-dimensional magnetization state in a two-phase bulk magnet with a lateral spatial resolution of 50 nm, mapping the transition between domain wall precession and the dynamics of a uniform magnetic domain that is attributed to variations in the magnetization state across the phase boundary. The capability to probe three-dimensional magnetic structures with temporal resolution paves the way for the experimental investigation of novel functionalities arising from dynamic phenomena in bulk and three-dimensional patterned nanomagnets.
We show that the Nielsen-Ninomiya no-go theorem still holds on Floquet lattice: there is an equal number of right-handed and left-handed Weyl points in 3D Floquet lattice. However, in the adiabatic limit, where the time evolution of low-energy subspace is decoupled from the high-energy subspace, we show that the bulk dynamics in the low-energy subspace can be described by Floquet bands with purely left/right-handed Weyl points, despite the no-go theorem. For the adiabatic evolution of two bands, we show that the difference of the number of right-handed and left-handed Weyl points equals twice the winding number of the Floquet operator of the low-energy subspace over the Brillouin zone, thus guaranteeing the number of Weyl points to be even. Based on this observation, we propose to realize purely left/right-handed Weyl points in the adiabatic limit using a Hamiltonian obtained through dimensional reduction of four-dimensional quantum Hall system. We address the breakdown of the adiabatic limit on the surface due to the presence of gapless boundary states. This effect induces a circular motion of a wave packet in an applied magnetic field, travelling alternatively in the low-energy and high-energy subspace of the system.
We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductor by changing the surface (interface) misorientation angle of chiral superconductors. We obtain analytical formula of the energy dispersion of SABS for general pair potential when an original 4$times$4 BdG Hamiltonian can be reduced to be two 2$times$2 blocks. The resulting SABS for 3D chiral superconductors with pair potential given by $k_z(k_x + ik_y)^{ u}$ $({ u} = 1, 2)$ has a complicated energy dispersion due to the coexistence of both point and line nodes. We focus on the tunneling spectroscopy of this pairing in the presence of applied magnetic field which induces Doppler shift of quasiparticle spectra. By contrast to previous known Doppler effect in unconventional superconductors, zero bias conductance dip can change into zero bias conductance peak by external magnetic field. We also study SABSs and tunneling spectroscopy for possible pairing symmetries of UPt$_3$ . For this purpose, we extend a standard formula of tunneling conductance of unconventional superconductor junctions in order to treat spin-triplet non-unitary pairings. The magneto tunneling spectroscopy, i.e., tunneling spectroscopy in the presence of magnetic field, can serve as a guide to determine the pairing symmetry of this material.
We theoretically investigate the temperature-dependent static susceptibility and long-range magnetic coupling of three-dimensional (3D) chiral gapless electron-hole systems (semimetals) with arbitrary band dispersion [i.e., $varepsilon(k) sim k^N$, where $k$ is the wave vector and $N$ is a positive integer]. We study the magnetic properties of these systems in the presence of dilute random magnetic impurities. Assuming carrier-mediated Ruderman-Kittel-Kasuya-Yosida indirect exchange interaction, we find that the magnetic ordering of intrinsic 3D chiral semimetals in the presence of dilute magnetic impurities is ferromagnetic for all values of $N$. Using finite-temperature self-consistent field approximation, we calculate the ferromagnetic transition temperature ($T_{rm c}$). We find that $T_{rm c}$ increases with increasing $N$ due to the enhanced density of states, and the calculated $T_{rm c}$ is experimentally accessible assuming reasonable coupling between the magnetic impurities and itinerant carriers.
The diversity of various manganese types and its complexes in the Mn-doped ${rm A^{III}B^V}$ semiconductor structures leads to a number of intriguing phenomena. Here we show that the interplay between the ordinary substitutional Mn acceptors and interstitial Mn donors as well as donor-acceptor dimers could result in a reversal of electron magnetization. In our all-optical scheme the impurity-to-band excitation via the Mn dimers results in direct orientation of the ionized Mn-donor $d$ shell. A photoexcited electron is then captured by the interstitial Mn and the electron spin becomes parallel to the optically oriented $d$ shell. That produces, in the low excitation regime, the spin-reversal electron magnetization. As the excitation intensity increases the capture by donors is saturated and the polarization of delocalized electrons restores the normal average spin in accordance with the selection rules. A possibility of the experimental observation of the electron spin reversal by means of polarized photoluminescence is discussed.