Do you want to publish a course? Click here

Imaging three-dimensional nanoscale magnetization dynamics

80   0   0.0 ( 0 )
 Added by Claire Donnelly
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to experimentally map the three-dimensional structure and dynamics in bulk and patterned three-dimensional ferromagnets is essential both for understanding fundamental micromagnetic processes, as well as for investigating technologically-relevant micromagnets whose functions are connected to the presence and dynamics of fundamental micromagnetic structures, such as domain walls and vortices. Here, we demonstrate time-resolved magnetic laminography, a technique which offers access to the temporal evolution of a complex three-dimensional magnetic structure with nanoscale resolution. We image the dynamics of the complex three-dimensional magnetization state in a two-phase bulk magnet with a lateral spatial resolution of 50 nm, mapping the transition between domain wall precession and the dynamics of a uniform magnetic domain that is attributed to variations in the magnetization state across the phase boundary. The capability to probe three-dimensional magnetic structures with temporal resolution paves the way for the experimental investigation of novel functionalities arising from dynamic phenomena in bulk and three-dimensional patterned nanomagnets.



rate research

Read More

Magnetic microscopy that combines nanoscale spatial resolution with picosecond scale temporal resolution uniquely enables direct observation of the spatiotemporal magnetic phenomena that are relevant to future high-speed, high-density magnetic storage and logic technologies. Magnetic microscopes that combine these metrics has been limited to facility-level instruments. To address this gap in lab-accessible spatiotemporal imaging, we develop a time-resolved near-field magnetic microscope based on magneto-thermal interactions. We demonstrate both magnetization and current density imaging modalities, each with spatial resolution that far surpasses the optical diffraction limit. In addition, we study the near-field and time-resolved characteristics of our signal and find that our instrument possesses a spatial resolution on the scale of 100 nm and a temporal resolution below 100 ps. Our results demonstrate an accessible and comparatively low-cost approach to nanoscale spatiotemporal magnetic microscopy in a table-top form to aid the science and technology of dynamic magnetic devices with complex spin textures.
Recent progress in nanofabrication and additive manufacturing have facilitated the building of nanometer-scale three-dimensional structures, that promise to lead to an emergence of new functionalities within a number of fields, compared to state-of-the-art two dimensional systems. In magnetism, the move to three-dimensional systems offers the possibility for novel magnetic properties not available in planar systems, as well as enhanced performance, both of which are key for the development of new technological applications. In this review paper we will focus our attention on three-dimensional magnetic systems and how their magnetic configuration can be retrieved using X-ray magnetic nanotomography.
Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 {mu}K/Hz1/2. The non-contact non-invasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limit of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes and reveal a novel dissipation mechanism due to resonant localized states in hBN encapsulated graphene, opening the door to direct imaging of nanoscale dissipation processes in quantum matter.
We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear or suddenly shift, to signal segment magnetization reversal events. These results show the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a new tool for the design of complicated magnonic systems.
Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy $<0.01$ GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy $<10^{-11}$ emu, enabling us to measure the pressure-driven $alphaleftrightarrowepsilon$ phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا