Do you want to publish a course? Click here

Speed and fate diversity tradeoff in nematodes early embryogenesis

70   0   0.0 ( 0 )
 Added by Guoye Guan
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Nematode species are well-known for their invariant cell lineage pattern during development. Combining knowledge about the fate specification induced by asymmetric division and the anti-correlation between cell cycle length and cell volume in Caenorhabditis elegans, we propose a model to simulate lineage initiation by altering cell volume segregation ratio in each division, and quantify the derived patterns performance in proliferation speed, fate diversity and space robustness. The stereotypic pattern in C. elegans embryo is found to be one of the most optimal solutions taking minimum time to achieve the cell number before gastrulation, by programming asymmetric division as a strategy.



rate research

Read More

124 - Jiao Miao , Guoye Guan , Chao Tang 2021
Cell internalization of a blastomere, namely gastrulation, is a common and significant milestone during development of metazoans from worm to human, which generates multiple embryonic layers with distinct cell fates and spatial organizations. Although many molecular activities (e.g., cell polarization, asymmetrical intercellular adhesion, and apical actomyosin cortex contraction) have been revealed to facilitate this morphogenetic process, in this paper, we focus on gastrulation of the worm Caenorhabditis elegans and demonstrate that even a simple mechanical system, like a group of cells with isotropic repulsive and attractive interactions, can experience such internalization behavior spontaneously when dividing within a confined space. In principle, when the total cell number exceeds a threshold, a double-layer structure acquires lower potential energy and longer neighbor distance than the single-layer one. Besides, both mechanical analysis and simulation suggest that the cells with a large size or placed near a small-curvature boundary are easier to internalize. Last but not least, extra regulation on a limited part of cells to internalize autonomously can stabilize this process against motional noise. Our work successfully recaptures many key characteristics in worm gastrulation by mechanical modeling and provides a novel and rational interpretation on how this phenomenon emerges and is optimally programed.
Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.
Purpose: Experimental measurements of bone mineral density distributions (BMDDs) enable a determination of secondary mineralisation kinetics in bone, but the maximum degree of mineralisation and how this maximum is approached remain uncertain. We thus test computationally different hypotheses on late stages of bone mineralisation by simulating BMDDs in low turnover conditions. Materials and Methods: An established computational model of the BMDD that accounts for mineralisation and remodelling processes was extended to limit mineralisation to various maximum calcium capacities of bone. Simulated BMDDs obtained by reducing turnover rate from the reference trabecular BMDD under different assumptions on late stage mineralisation kinetics were compared with experimental BMDDs of low-turnover bone. Results: Simulations show that an abrupt stopping of mineralisation near a maximum calcium capacity induces a pile-up of minerals in the BMDD statistics that is not observed experimentally. With a smooth decrease of mineralisation rate, imposing low maximum calcium capacities helps to match peak location and width of simulated low turnover BMDDs with peak location and width of experimental BMDDs, but results in a distinctive asymmetric peak shape. No tuning of turnover rate and maximum calcium capacity was able to explain the differences found in experimental BMDDs between trabecular bone (high turnover) and femoral cortical bone (low turnover). Conclusions: Secondary mineralisation in human bone does not stop abruptly, but continues slowly up to a calcium content greater than 30 wt% Ca. The similar mineral heterogeneity seen in trabecular and femoral cortical bones at different peak locations was unexplained by turnover differences tested.
Mounting evidence for the role of oxidative stress in the degeneration of articular cartilage after an injurious impact requires our modeling & simulation efforts to temporarily shift from just describing the effect of mechanical stress and inflammation on osteoarthritis (OA). The hypothesis that the injurious impact causes irreversible damage to chondrocyte mitochondria, which in turn increase their production of free radicals, affecting their energy production and their ability to rebuild the extracellular matrix, has to be modeled and the processes quantified in order to further the understanding of OA, its causes, and viable treatment options. The current article presents a calibrated model that captures the damage oxidative stress incurs on the cell viability, ATP production, and cartilage stability in a cartilage explant after a drop-tower impact. The model validates the biological hypothesis and will be used in further efforts to identify possibilities for treatment and be a part of a bigger modeling & simulation framework for the development of OA.
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a F{o}rster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding whilst simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronised cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا