No Arabic abstract
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a F{o}rster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding whilst simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronised cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.
Cell internalization of a blastomere, namely gastrulation, is a common and significant milestone during development of metazoans from worm to human, which generates multiple embryonic layers with distinct cell fates and spatial organizations. Although many molecular activities (e.g., cell polarization, asymmetrical intercellular adhesion, and apical actomyosin cortex contraction) have been revealed to facilitate this morphogenetic process, in this paper, we focus on gastrulation of the worm Caenorhabditis elegans and demonstrate that even a simple mechanical system, like a group of cells with isotropic repulsive and attractive interactions, can experience such internalization behavior spontaneously when dividing within a confined space. In principle, when the total cell number exceeds a threshold, a double-layer structure acquires lower potential energy and longer neighbor distance than the single-layer one. Besides, both mechanical analysis and simulation suggest that the cells with a large size or placed near a small-curvature boundary are easier to internalize. Last but not least, extra regulation on a limited part of cells to internalize autonomously can stabilize this process against motional noise. Our work successfully recaptures many key characteristics in worm gastrulation by mechanical modeling and provides a novel and rational interpretation on how this phenomenon emerges and is optimally programed.
The mechanisms underlying collective migration, or the coordinated movement of a population of cells, are not well understood despite its ubiquitous nature. As a means to investigate collective migration, we consider a wound healing scenario in which a population of cells fills in the empty space left from a scratch wound. Here we present a simplified mathematical model that uses reaction-diffusion equations to model collective migration during wound healing with an emphasis on cell movement and its response to both cell signaling and cell-cell adhesion. We use the model to investigate the effect of the MAPK signaling cascade on cell-cell adhesion during wound healing after EGF treatment. Our results suggest that activation of the MAPK signaling cascade stimulates collective migration through increases in the pulling strength of leader cells. We further use the model to suggest that treating a cell population with EGF converts the time to wound closure (as function of wound area) from parabolic to linear.
The physical and chemical environment inside cells is of fundamental importance to all life but has traditionally been difficult to determine on a subcellular basis. Here we combine cutting-edge genomically integrated FRET biosensing to readout localized molecular crowding in single live yeast cells. Confocal microscopy allows us to build subcellular crowding heatmaps using ratiometric FRET, while whole-cell analysis demonstrates crowding is reduced when yeast is grown in elevated glucose concentrations. Simulations indicate that the cell membrane is largely inaccessible to these sensors and that cytosolic crowding is broadly uniform across each cell over a timescale of seconds. Millisecond single-molecule optical microscopy was used to track molecules and obtain brightness estimates that enabled calculation of crowding sensor copy numbers. The quantification of diffusing molecule trajectories paves the way for correlating subcellular processes and the physicochemical environment of cells under stress.
The cell membrane deforms during endocytosis to surround extracellular material and draw it into the cell. Experiments on endocytosis in yeast all agree that (i) actin polymerizes into a network of filaments exerting active forces on the membrane to deform it and (ii) the large scale membrane deformation is tubular in shape. There are three competing proposals, in contrast, for precisely how the actin filament network organizes itself to drive the deformation. We use variational approaches and numerical simulations to address this competition by analyzing a meso-scale model of actin-mediated endocytosis in yeast. The meso-scale model breaks up the invagination process into three stages: (i) initiation, where clathrin interacts with the membrane via adaptor proteins, (ii) elongation, where the membrane is then further deformed by polymerizing actin filaments, followed by (iii) pinch-off. Our results suggest that the pinch-off mechanism may be assisted by a pearling-like instability. We rule out two of the three competing proposals for the organization of the actin filament network during the elongation stage. These two proposals could possibly be important in the pinch-off stage, however, where additional actin polymerization helps break off the vesicle. Implications and comparisons with earlier modeling of endocytosis in yeast are discussed.