Do you want to publish a course? Click here

Lyman Continuum Escape Fraction from Low-mass Starbursts at z=1.3

169   0   0.0 ( 0 )
 Added by Anahita Alavi
 Publication date 2020
  fields Physics
and research's language is English
 Authors Anahita Alavi




Ask ChatGPT about the research

We present a new constraint on the Lyman Continuum (LyC) escape fraction at z~1.3. We obtain deep, high sensitivity far-UV imaging with the Advanced Camera for Surveys (ACS) Solar Blind Channel (SBC) on the Hubble Space Telescope (HST), targeting 11 star-forming galaxies at 1.2<z<1.4. The galaxies are selected from the 3D-HST survey to have high H$alpha$ equivalent width (EW) with EW > 190 AA, low stellar mass (M* < 10^10 M_sun) and U-band magnitude of U<24.2. These criteria identify young, low metallicity star bursting populations similar to the primordial star-forming galaxies believed to have reionized the universe. We do not detect any LyC signal (with S/N >3) in the individual galaxies or in the stack in the far-UV images. We place $3sigma$ limits on the relative escape fraction of individual galaxies to be f_{esc,rel}<[0.10-0.22] and a stacked $3sigma$ limit of f_{esc,rel}<0.07. Comparing to the confirmed LyC emitters from the literature, the galaxies in our sample span similar ranges of various galaxy properties including stellar mass, dust attenuation, and star formation rate (SFR). In particular, we compare the distribution of H$alpha$ and [OIII] EWs of confirmed LyC emitters and non-detections including the galaxies in this study. Finally, we discuss if a dichotomy seen in the distribution of H$alpha$ EWs can perhaps distinguish the LyC emitters from the non-detections.



rate research

Read More

183 - Brian Siana 2007
We examine deep far-ultraviolet (1600 Angstrom) imaging of the Hubble Deep Field-North (HDFN) and the Hubble Ultra Deep Field (HUDF) to search for leaking Lyman continuum radiation from starburst galaxies at z~1.3. There are 21 (primarily sub-L*) galaxies with spectroscopic redshifts between 1.1<z<1.5 and none are detected in the far-UV. We fit stellar population templates to the galaxies optical/near-infrared SEDs to determine the starburst age and level of dust attenuation, giving an accurate estimate of the intrinsic Lyman continuum ratio, f_1500/f_700, and allowing a conversion from f_700 limits to relative escape fractions. We show that previous high-redshift studies may have underestimated the amplitude of the Lyman Break, and thus the relative escape fraction, by a factor of ~2. Once the starburst age and intergalactic HI absorption are accounted for, 18 galaxies in our sample have limits to the relative escape fraction, f_esc,rel < 1.0 with some limits as low as f_esc,rel < 0.10 and a stacked limit of f_esc,rel < 0.08. This demonstrates, for the first time, that most sub-L* galaxies at high redshift do not have large escape fractions. When combined with a similar study of more luminous galaxies at the same redshift we show that, if all star-forming galaxies at z~1 have similar relative escape fractions, the value must be less than 0.14 (3 sigma). We also show that less than 20% (3 sigma) of star-forming galaxies at z~1 have relative escape fractions near unity. These limits contrast with the large escape fractions found at z~3 and suggest that the average escape fraction has decreased between z~3 and z~1. (Abridged)
121 - Renyue Cen , Taysun Kimm 2015
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewed probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($left<f_{rm esc,1D}right>$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is small, the apparent mean skews to the low end. For example, for a true mean of 6.7%, an observational sample of (2,10,50) galaxies at $z=4$ would have have 2.5% probability of obtaining the sample mean lower than $left<f_{rm esc,1D}right>=$(0.007%, 1.8%, 4.1%) and 2.5% probability of obtaining the sample mean being greater than (43%, 18%, 11%). Our simulations suggest that at least $sim$ 100 galaxies should be stacked in order to constrain the true escape fraction within 20% uncertainty.
The Lyman continuum (LyC) flux escaping from high-z galaxies into the IGM is a fundamental quantity to understand the physical processes involved in the reionization epoch. We have investigated a sample of star-forming galaxies at z~3.3 in order to search for possible detections of LyC photons escaping from galaxy halos. UV deep imaging in the COSMOS field obtained with the prime focus camera LBC at the LBT telescope was used together with a catalog of spectroscopic redshifts obtained by the VIMOS Ultra Deep Survey (VUDS) to build a sample of 45 galaxies at z~3.3 with L>0.5L*. We obtained deep LBC images of galaxies with spectroscopic redshifts in the interval 3.27<z<3.40 both in the R and deep U bands. A sub-sample of 10 galaxies apparently shows escape fractions>28% but a detailed analysis of their properties reveals that, with the exception of two marginal detections (S/N~2) in the U band, all the other 8 galaxies are most likely contaminated by the UV flux of low-z interlopers located close to the high-z targets. The average escape fraction derived from the stacking of the cleaned sample was constrained to fesc_rel<2%. The implied HI photo-ionization rate is a factor two lower than that needed to keep the IGM ionized at z~3, as observed in the Lyman forest of high-z QSO spectra or by the proximity effect. These results support a scenario where high redshift, relatively bright (L>0.5L*) star-forming galaxies alone are unable to sustain the level of ionization observed in the cosmic IGM at z~3. Star-forming galaxies at higher redshift and at fainter luminosities (L<<L*) can be the major contributors to the reionization of the Universe only if their physical properties are subject to rapid changes from z~3 to z~6-10. Alternatively, ionizing sources could be discovered looking for fainter sources among the AGN population at high-z.
Escaping Lyman continuum photons from galaxies likely reionized the intergalactic medium at redshifts $zgtrsim6$. However, the Lyman continuum is not directly observable at these redshifts and secondary indicators of Lyman continuum escape must be used to estimate the budget of ionizing photons. Observationally, at redshifts $zsim2-3$ where the Lyman continuum is observationally accessible, surveys have established that many objects that show appreciable Lyman continuum escape fractions $f_{esc}$ also show enhanced [OIII]/[OII] (O$_{32}$) emission line ratios. Here, we use radiative transfer analyses of cosmological zoom-in simulations of galaxy formation to study the physical connection between $f_{esc}$ and O$_{32}$. Like the observations, we find that the largest $f_{esc}$ values occur at elevated O$_{32}sim3-10$ and that the combination of high $f_{esc}$ and low O$_{32}$ is extremely rare. While high $f_{esc}$ and O$_{32}$ often are observable concurrently, the timescales of the physical origin for the processes are very different. Large O$_{32}$ values fluctuate on short ($sim$1 Myr) timescales during the Wolf-Rayet-powered phase after the formation of star clusters, while channels of low absorption are established over tens of megayears by collections of supernovae. We find that while there is no direct causal relation between $f_{esc}$ and O$_{32}$, high $f_{esc}$ most often occurs after continuous input from star formation-related feedback events that have corresponding excursions to large O$_{32}$ emission. These calculations are in agreement with interpretations of observations that large $f_{esc}$ tends to occur when O$_{32}$ is large, but large O$_{32}$ does not necessarily imply efficient Lyman continuum escape.
We report on the serendipitous discovery of a z=4.0, M1500=-22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (~60% escaping), a remarkable multiple peaked Lya emission, and significant Lya radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionising and Lya radiation possibly share a common ionised cavity (with N_HI<10^17.2 cm^-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni NV1240 profile, and has blue ultraviolet continuum (beta = -2.5 +/- 0.25, F_lambda~ lambda^beta) with weak low-ionisation interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6um and 4.5um imaging show a clear photometric signature of the Halpha line with equivalent width of 1000A rest-frame emerging over a flat continuum (Ks-4.5um ~ 0). From the SED fitting we derive a stellar mass of 1.5x10^9 Msun, SFR of 140 Msun/yr and age of ~10 Myr, with a low dust extinction, E(B-V)< 0.1, placing the source in the starburst region of the SFR-M^* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z=3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionising sources at z>6.5 with JWST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا