Do you want to publish a course? Click here

New Constraints on the Lyman Continuum Escape Fraction at z~1.3

175   0   0.0 ( 0 )
 Added by Brian Siana
 Publication date 2007
  fields Physics
and research's language is English
 Authors Brian Siana




Ask ChatGPT about the research

We examine deep far-ultraviolet (1600 Angstrom) imaging of the Hubble Deep Field-North (HDFN) and the Hubble Ultra Deep Field (HUDF) to search for leaking Lyman continuum radiation from starburst galaxies at z~1.3. There are 21 (primarily sub-L*) galaxies with spectroscopic redshifts between 1.1<z<1.5 and none are detected in the far-UV. We fit stellar population templates to the galaxies optical/near-infrared SEDs to determine the starburst age and level of dust attenuation, giving an accurate estimate of the intrinsic Lyman continuum ratio, f_1500/f_700, and allowing a conversion from f_700 limits to relative escape fractions. We show that previous high-redshift studies may have underestimated the amplitude of the Lyman Break, and thus the relative escape fraction, by a factor of ~2. Once the starburst age and intergalactic HI absorption are accounted for, 18 galaxies in our sample have limits to the relative escape fraction, f_esc,rel < 1.0 with some limits as low as f_esc,rel < 0.10 and a stacked limit of f_esc,rel < 0.08. This demonstrates, for the first time, that most sub-L* galaxies at high redshift do not have large escape fractions. When combined with a similar study of more luminous galaxies at the same redshift we show that, if all star-forming galaxies at z~1 have similar relative escape fractions, the value must be less than 0.14 (3 sigma). We also show that less than 20% (3 sigma) of star-forming galaxies at z~1 have relative escape fractions near unity. These limits contrast with the large escape fractions found at z~3 and suggest that the average escape fraction has decreased between z~3 and z~1. (Abridged)



rate research

Read More

168 - Anahita Alavi 2020
We present a new constraint on the Lyman Continuum (LyC) escape fraction at z~1.3. We obtain deep, high sensitivity far-UV imaging with the Advanced Camera for Surveys (ACS) Solar Blind Channel (SBC) on the Hubble Space Telescope (HST), targeting 11 star-forming galaxies at 1.2<z<1.4. The galaxies are selected from the 3D-HST survey to have high H$alpha$ equivalent width (EW) with EW > 190 AA, low stellar mass (M* < 10^10 M_sun) and U-band magnitude of U<24.2. These criteria identify young, low metallicity star bursting populations similar to the primordial star-forming galaxies believed to have reionized the universe. We do not detect any LyC signal (with S/N >3) in the individual galaxies or in the stack in the far-UV images. We place $3sigma$ limits on the relative escape fraction of individual galaxies to be f_{esc,rel}<[0.10-0.22] and a stacked $3sigma$ limit of f_{esc,rel}<0.07. Comparing to the confirmed LyC emitters from the literature, the galaxies in our sample span similar ranges of various galaxy properties including stellar mass, dust attenuation, and star formation rate (SFR). In particular, we compare the distribution of H$alpha$ and [OIII] EWs of confirmed LyC emitters and non-detections including the galaxies in this study. Finally, we discuss if a dichotomy seen in the distribution of H$alpha$ EWs can perhaps distinguish the LyC emitters from the non-detections.
Determining the average fraction of Lyman continuum (LyC) photons escaping high redshift galaxies is essential for understanding how reionization proceeded in the z>6 Universe. We want to measure the LyC signal from a sample of sources in the Chandra Deep Field South (CDFS) and COSMOS fields for which ultra-deep VIMOS spectroscopy as well as multi-wavelength Hubble Space Telescope (HST) imaging are available. We select a sample of 46 galaxies at $zsim 4$ from the VIMOS Ultra Deep Survey (VUDS) database, such that the VUDS spectra contain the LyC part of the spectra, that is, the rest-frame range $880-910AA$. Taking advantage of the HST imaging, we apply a careful cleaning procedure and reject all the sources showing nearby clumps with different colours, that could potentially be lower-redshift interlopers. After this procedure, the sample is reduced to 33 galaxies. We measure the ratio between ionizing flux (LyC at $895AA$) and non-ionizing emission (at $sim 1500 AA$) for all individual sources. We also produce a normalized stacked spectrum of all sources. Assuming an intrinsic average $L_{ u}(1470)/L_{ u}(895)$ of 3, we estimate the individual and average relative escape fraction. We do not detect ionizing radiation from any individual source, although we identify a possible LyC emitter with very high Ly$alpha$ equivalent width (EW). From the stacked spectrum and assuming a mean transmissivity for the sample, we measure a relative escape fraction $f_{esc}^{rel}=0.09pm0.04$. We also look for correlations between the limits in the LyC flux and source properties and find a tentative correlation between LyC flux and the EW of the Ly$alpha$ emission line. Our results imply that the LyC flux emitted by $V=25-26$ star-forming galaxies at z$sim$4 is at most very modest, in agreement with previous upper limits from studies based on broad and narrow band imaging.
115 - Renyue Cen , Taysun Kimm 2015
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewed probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($left<f_{rm esc,1D}right>$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is small, the apparent mean skews to the low end. For example, for a true mean of 6.7%, an observational sample of (2,10,50) galaxies at $z=4$ would have have 2.5% probability of obtaining the sample mean lower than $left<f_{rm esc,1D}right>=$(0.007%, 1.8%, 4.1%) and 2.5% probability of obtaining the sample mean being greater than (43%, 18%, 11%). Our simulations suggest that at least $sim$ 100 galaxies should be stacked in order to constrain the true escape fraction within 20% uncertainty.
The Lyman continuum (LyC) flux escaping from high-z galaxies into the IGM is a fundamental quantity to understand the physical processes involved in the reionization epoch. We have investigated a sample of star-forming galaxies at z~3.3 in order to search for possible detections of LyC photons escaping from galaxy halos. UV deep imaging in the COSMOS field obtained with the prime focus camera LBC at the LBT telescope was used together with a catalog of spectroscopic redshifts obtained by the VIMOS Ultra Deep Survey (VUDS) to build a sample of 45 galaxies at z~3.3 with L>0.5L*. We obtained deep LBC images of galaxies with spectroscopic redshifts in the interval 3.27<z<3.40 both in the R and deep U bands. A sub-sample of 10 galaxies apparently shows escape fractions>28% but a detailed analysis of their properties reveals that, with the exception of two marginal detections (S/N~2) in the U band, all the other 8 galaxies are most likely contaminated by the UV flux of low-z interlopers located close to the high-z targets. The average escape fraction derived from the stacking of the cleaned sample was constrained to fesc_rel<2%. The implied HI photo-ionization rate is a factor two lower than that needed to keep the IGM ionized at z~3, as observed in the Lyman forest of high-z QSO spectra or by the proximity effect. These results support a scenario where high redshift, relatively bright (L>0.5L*) star-forming galaxies alone are unable to sustain the level of ionization observed in the cosmic IGM at z~3. Star-forming galaxies at higher redshift and at fainter luminosities (L<<L*) can be the major contributors to the reionization of the Universe only if their physical properties are subject to rapid changes from z~3 to z~6-10. Alternatively, ionizing sources could be discovered looking for fainter sources among the AGN population at high-z.
We present the first results of our pilot study of 8 photometrically selected Lyman continuum (LyC) emitting galaxy candidates from the COSMOS field and focus on their optical emission line ratios. Observations were performed in the H and K bands using the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) instrument at the Keck Observatory, targeting the [OII], H$beta$, and [OIII] emission lines. We find that photometrically selected LyC emitting galaxy candidates have high ionization parameters, based on their high [OIII]/[OII] ratios (O32), with an average ratio for our sample of 2.5$pm$0.2. Preliminary results of our companion Low Resolution Imaging Spectrometer (LRIS) observations, targeting LyC and Ly$alpha$, show that those galaxies with the largest O32 are typically found to also be Ly$alpha$ emitters. High O32 galaxies are also found to have tentative non-zero LyC escape fractions ($f_{esc}(LyC)$) based on $u$ band photometric detections. These results are consistent with samples of highly ionized galaxies, including confirmed LyC emitting galaxies from the literature. We also perform a detailed comparison between the observed emission line ratios and simulated line ratios from density bounded H$_{textrm{II}}$ regions modeled using the photoionization code MAPPINGS V. Estimates of $f_{esc}(LyC)$ for our sample fall in the range from 0.0-0.23 and suggest possible tension with published correlations between O32 and $f_{esc}(LyC)$, adding weight to dichotomy of arguments in the literature. We highlight the possible effects of clumpy geometry and mergers that may account for such tension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا