Do you want to publish a course? Click here

SGQuant: Squeezing the Last Bit on Graph Neural Networks with Specialized Quantization

201   0   0.0 ( 0 )
 Added by Yuke Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the increasing popularity of graph-based learning, Graph Neural Networks (GNNs) win lots of attention from the research and industry field because of their high accuracy. However, existing GNNs suffer from high memory footprints (e.g., node embedding features). This high memory footprint hurdles the potential applications towards memory-constrained devices, such as the widely-deployed IoT devices. To this end, we propose a specialized GNN quantization scheme, SGQuant, to systematically reduce the GNN memory consumption. Specifically, we first propose a GNN-tailored quantization algorithm design and a GNN quantization fine-tuning scheme to reduce memory consumption while maintaining accuracy. Then, we investigate the multi-granularity quantization strategy that operates at different levels (components, graph topology, and layers) of GNN computation. Moreover, we offer an automatic bit-selecting (ABS) to pinpoint the most appropriate quantization bits for the above multi-granularity quantizations. Intensive experiments show that SGQuant can effectively reduce the memory footprint from 4.25x to 31.9x compared with the original full-precision GNNs while limiting the accuracy drop to 0.4% on average.



rate research

Read More

Graph neural networks (GNNs) have demonstrated strong performance on a wide variety of tasks due to their ability to model non-uniform structured data. Despite their promise, there exists little research exploring methods to make them more efficient at inference time. In this work, we explore the viability of training quantized GNNs, enabling the usage of low precision integer arithmetic during inference. We identify the sources of error that uniquely arise when attempting to quantize GNNs, and propose an architecturally-agnostic method, Degree-Quant, to improve performance over existing quantization-aware training baselines commonly used on other architectures, such as CNNs. We validate our method on six datasets and show, unlike previous attempts, that models generalize to unseen graphs. Models trained with Degree-Quant for INT8 quantization perform as well as FP32 models in most cases; for INT4 models, we obtain up to 26% gains over the baselines. Our work enables up to 4.7x speedups on CPU when using INT8 arithmetic.
74 - Xiaowei Xu 2019
Cyber-Physical Systems (CPSs) have been pervasive including smart grid, autonomous automobile systems, medical monitoring, process control systems, robotics systems, and automatic pilot avionics. As usually implemented on embedded devices, CPS is typically constrained by computation capacity and energy consumption. In some CPS applications such as telemedicine and advanced driving assistance system (ADAS), data processing on the embedded devices is preferred due to security/safety and real-time requirement. Therefore, high efficiency is highly desirable for such CPS applications. In this paper we present CeNN quantization for high-efficient processing for CPS applications, particularly telemedicine and ADAS applications. We systematically put forward powers-of-two based incremental quantization of CeNNs for efficient hardware implementation. The incremental quantization contains iterative procedures including parameter partition, parameter quantization, and re-training. We propose five different strategies including random strategy, pruning inspired strategy, weighted pruning inspired strategy, nearest neighbor strategy, and weighted nearest neighbor strategy. Experimental results show that our approach can achieve a speedup up to 7.8x with no performance loss compared with the state-of-the-art FPGA solutions for CeNNs.
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approach for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
This paper builds on the connection between graph neural networks and traditional dynamical systems. We propose continuous graph neural networks (CGNN), which generalise existing graph neural networks with discrete dynamics in that they can be viewed as a specific discretisation scheme. The key idea is how to characterise the continuous dynamics of node representations, i.e. the derivatives of node representations, w.r.t. time. Inspired by existing diffusion-based methods on graphs (e.g. PageRank and epidemic models on social networks), we define the derivatives as a combination of the current node representations, the representations of neighbors, and the initial values of the nodes. We propose and analyse two possible dynamics on graphs---including each dimension of node representations (a.k.a. the feature channel) change independently or interact with each other---both with theoretical justification. The proposed continuous graph neural networks are robust to over-smoothing and hence allow us to build deeper networks, which in turn are able to capture the long-range dependencies between nodes. Experimental results on the task of node classification demonstrate the effectiveness of our proposed approach over competitive baselines.
417 - Fangda Gu , Heng Chang , Wenwu Zhu 2020
Graph Neural Networks (GNNs) are widely used deep learning models that learn meaningful representations from graph-structured data. Due to the finite nature of the underlying recurrent structure, current GNN methods may struggle to capture long-range dependencies in underlying graphs. To overcome this difficulty, we propose a graph learning framework, called Implicit Graph Neural Networks (IGNN), where predictions are based on the solution of a fixed-point equilibrium equation involving implicitly defined state vectors. We use the Perron-Frobenius theory to derive sufficient conditions that ensure well-posedness of the framework. Leveraging implicit differentiation, we derive a tractable projected gradient descent method to train the framework. Experiments on a comprehensive range of tasks show that IGNNs consistently capture long-range dependencies and outperform the state-of-the-art GNN models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا