Do you want to publish a course? Click here

Degree-Quant: Quantization-Aware Training for Graph Neural Networks

127   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Graph neural networks (GNNs) have demonstrated strong performance on a wide variety of tasks due to their ability to model non-uniform structured data. Despite their promise, there exists little research exploring methods to make them more efficient at inference time. In this work, we explore the viability of training quantized GNNs, enabling the usage of low precision integer arithmetic during inference. We identify the sources of error that uniquely arise when attempting to quantize GNNs, and propose an architecturally-agnostic method, Degree-Quant, to improve performance over existing quantization-aware training baselines commonly used on other architectures, such as CNNs. We validate our method on six datasets and show, unlike previous attempts, that models generalize to unseen graphs. Models trained with Degree-Quant for INT8 quantization perform as well as FP32 models in most cases; for INT4 models, we obtain up to 26% gains over the baselines. Our work enables up to 4.7x speedups on CPU when using INT8 arithmetic.



rate research

Read More

Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by the success of neural networks, a line of research has been conducted to train GNNs to deal with various tasks, such as node classification, graph classification, and link prediction. In this work, our task of interest is graph classification. Several GNN models have been proposed and shown great accuracy in this task. However, the question is whether usual training methods fully realize the capacity of the GNN models. In this work, we propose a two-stage training framework based on triplet loss. In the first stage, GNN is trained to map each graph to a Euclidean-space vector so that graphs of the same class are close while those of different classes are mapped far apart. Once graphs are well-separated based on labels, a classifier is trained to distinguish between different classes. This method is generic in the sense that it is compatible with any GNN model. By adapting five GNN models to our method, we demonstrate the consistent improvement in accuracy and utilization of each GNNs allocated capacity over the original training method of each model up to 5.4% points in 12 datasets.
The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried out using integer-only arithmetic, which can be implemented more efficiently than floating point inference on commonly available integer-only hardware. We also co-design a training procedure to preserve end-to-end model accuracy post quantization. As a result, the proposed quantization scheme improves the tradeoff between accuracy and on-device latency. The improvements are significant even on MobileNets, a model family known for run-time efficiency, and are demonstrated in ImageNet classification and COCO detection on popular CPUs.
Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some applications. To tackle this problem, we propose a pre-training framework that captures generic graph structural information that is transferable across tasks. Our framework can leverage the following three tasks: 1) denoising link reconstruction, 2) centrality score ranking, and 3) cluster preserving. The pre-training procedure can be conducted purely on the synthetic graphs, and the pre-trained GNN is then adapted for downstream applications. With the proposed pre-training procedure, the generic structural information is learned and preserved, thus the pre-trained GNN requires less amount of labeled data and fewer domain-specific features to achieve high performance on different downstream tasks. Comprehensive experiments demonstrate that our proposed framework can significantly enhance the performance of various tasks at the level of node, link, and graph.
Change-point detection (CPD) aims to detect abrupt changes over time series data. Intuitively, effective CPD over multivariate time series should require explicit modeling of the dependencies across input variables. However, existing CPD methods either ignore the dependency structures entirely or rely on the (unrealistic) assumption that the correlation structures are static over time. In this paper, we propose a Correlation-aware Dynamics Model for CPD, which explicitly models the correlation structure and dynamics of variables by incorporating graph neural networks into an encoder-decoder framework. Extensive experiments on synthetic and real-world datasets demonstrate the advantageous performance of the proposed model on CPD tasks over strong baselines, as well as its ability to classify the change-points as correlation changes or independent changes. Keywords: Multivariate Time Series, Change-point Detection, Graph Neural Networks
The performance limit of Graph Convolutional Networks (GCNs) and the fact that we cannot stack more of them to increase the performance, which we usually do for other deep learning paradigms, are pervasively thought to be caused by the limitations of the GCN layers, including insufficient expressive power, etc. However, if so, for a fixed architecture, it would be unlikely to lower the training difficulty and to improve performance by changing only the training procedure, which we show in this paper not only possible but possible in several ways. This paper first identify the training difficulty of GCNs from the perspective of graph signal energy loss. More specifically, we find that the loss of energy in the backward pass during training nullifies the learning of the layers closer to the input. Then, we propose several methodologies to mitigate the training problem by slightly modifying the GCN operator, from the energy perspective. After empirical validation, we confirm that these changes of operator lead to significant decrease in the training difficulties and notable performance boost, without changing the composition of parameters. With these, we conclude that the root cause of the problem is more likely the training difficulty than the others.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا