Do you want to publish a course? Click here

The Phong Surface: Efficient 3D Model Fitting using Lifted Optimization

329   0   0.0 ( 0 )
 Added by Jingjing Shen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Realtime perceptual and interaction capabilities in mixed reality require a range of 3D tracking problems to be solved at low latency on resource-constrained hardware such as head-mounted devices. Indeed, for devices such as HoloLens 2 where the CPU and GPU are left available for applications, multiple tracking subsystems are required to run on a continuous, real-time basis while sharing a single Digital Signal Processor. To solve model-fitting problems for HoloLens 2 hand tracking, where the computational budget is approximately 100 times smaller than an iPhone 7, we introduce a new surface model: the `Phong surface. Using ideas from computer graphics, the Phong surface describes the same 3D shape as a triangulated mesh model, but with continuous surface normals which enable the use of lifting-based optimization, providing significant efficiency gains over ICP-based methods. We show that Phong surfaces retain the convergence benefits of smoother surface models, while triangle meshes do not.



rate research

Read More

Recently, some hypergraph-based methods have been proposed to deal with the problem of model fitting in computer vision, mainly due to the superior capability of hypergraph to represent the complex relationship between data points. However, a hypergraph becomes extremely complicated when the input data include a large number of data points (usually contaminated with noises and outliers), which will significantly increase the computational burden. In order to overcome the above problem, we propose a novel hypergraph optimization based model fitting (HOMF) method to construct a simple but effective hypergraph. Specifically, HOMF includes two main parts: an adaptive inlier estimation algorithm for vertex optimization and an iterative hyperedge optimization algorithm for hyperedge optimization. The proposed method is highly efficient, and it can obtain accurate model fitting results within a few iterations. Moreover, HOMF can then directly apply spectral clustering, to achieve good fitting performance. Extensive experimental results show that HOMF outperforms several state-of-the-art model fitting methods on both synthetic data and real images, especially in sampling efficiency and in handling data with severe outliers.
We present Exemplar Fine-Tuning (EFT), a new method to fit a 3D parametric human model to a single RGB input image cropped around a person with 2D keypoint annotations. While existing parametric human model fitting approaches, such as SMPLify, rely on the view-agnostic human pose priors to enforce the output in a plausible 3D pose space, EFT exploits the pose prior that comes from the specific 2D input observations by leveraging a fully-trained 3D pose regressor. We thoroughly compare our EFT with SMPLify, and demonstrate that EFT produces more reliable and accurate 3D human fitting outputs on the same inputs. Especially, we use our EFT to augment a large scale in-the-wild 2D keypoint datasets, such as COCO and MPII, with plausible and convincing 3D pose fitting outputs. We demonstrate that the pseudo ground-truth 3D pose data by EFT can supervise a strong 3D pose estimator that outperforms the previous state-of-the-art in the standard outdoor benchmark (3DPW), even without using any ground-truth 3D human pose datasets such as Human3.6M. Our code and data are available at https://github.com/facebookresearch/eft.
Face recognition now requires a large number of labelled masked face images in the era of this unprecedented COVID-19 pandemic. Unfortunately, the rapid spread of the virus has left us little time to prepare for such dataset in the wild. To circumvent this issue, we present a 3D model-based approach called WearMask3D for augmenting face images of various poses to the masked face counterparts. Our method proceeds by first fitting a 3D morphable model on the input image, second overlaying the mask surface onto the face model and warping the respective mask texture, and last projecting the 3D mask back to 2D. The mask texture is adapted based on the brightness and resolution of the input image. By working in 3D, our method can produce more natural masked faces of diverse poses from a single mask texture. To compare precisely between different augmentation approaches, we have constructed a dataset comprising masked and unmasked faces with labels called MFW-mini. Experimental results demonstrate WearMask3D produces more realistic masked faces, and utilizing these images for training leads to state-of-the-art recognition accuracy for masked faces.
We propose a new cascaded regressor for eye center detection. Previous methods start from a face or an eye detector and use either advanced features or powerful regressors for eye center localization, but not both. Instead, we detect the eyes more accurately using an existing facial feature alignment method. We improve the robustness of localization by using both advanced features and powerful regression machinery. Unlike most other methods that do not refine the regression results, we make the localization more accurate by adding a robust circle fitting post-processing step. Finally, using a simple hand-crafted method for eye center localization, we show how to train the cascaded regressor without the need for manually annotated training data. We evaluate our new approach and show that it achieves state-of-the-art performance on the BioID, GI4E, and the TalkingFace datasets. At an average normalized error of e < 0.05, the regressor trained on manually annotated data yields an accuracy of 95.07% (BioID), 99.27% (GI4E), and 95.68% (TalkingFace). The automatically trained regressor is nearly as good, yielding an accuracy of 93.9% (BioID), 99.27% (GI4E), and 95.46% (TalkingFace).
144 - Miao Yin , Yang Sui , Siyu Liao 2021
Advanced tensor decomposition, such as Tensor train (TT) and Tensor ring (TR), has been widely studied for deep neural network (DNN) model compression, especially for recurrent neural networks (RNNs). However, compressing convolutional neural networks (CNNs) using TT/TR always suffers significant accuracy loss. In this paper, we propose a systematic framework for tensor decomposition-based model compression using Alternating Direction Method of Multipliers (ADMM). By formulating TT decomposition-based model compression to an optimization problem with constraints on tensor ranks, we leverage ADMM technique to systemically solve this optimization problem in an iterative way. During this procedure, the entire DNN model is trained in the original structure instead of TT format, but gradually enjoys the desired low tensor rank characteristics. We then decompose this uncompressed model to TT format and fine-tune it to finally obtain a high-accuracy TT-format DNN model. Our framework is very general, and it works for both CNNs and RNNs, and can be easily modified to fit other tensor decomposition approaches. We evaluate our proposed framework on different DNN models for image classification and video recognition tasks. Experimental results show that our ADMM-based TT-format models demonstrate very high compression performance with high accuracy. Notably, on CIFAR-100, with 2.3X and 2.4X compression ratios, our models have 1.96% and 2.21% higher top-1 accuracy than the original ResNet-20 and ResNet-32, respectively. For compressing ResNet-18 on ImageNet, our model achieves 2.47X FLOPs reduction without accuracy loss.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا