No Arabic abstract
We present a measurement of the first-order azimuthal anisotropy, $v_1(y)$, of deuterons from Au+Au collisions at $sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV recorded with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The energy dependence of the $v_1(y)$ slope, $dv_{1}/dy|_{y=0}$, for deuterons, where $y$ is the rapidity, is extracted for semi-central collisions (10-40% centrality) and compared to that of protons. While the $v_1(y)$ slopes of protons are generally negative for $sqrt{s_{NN}} >$ 10 GeV, those for deuterons are consistent with zero, a strong enhancement of the $v_1(y)$ slope of deuterons is seen at the lowest collision energy (the largest baryon density) at $sqrt{s_{NN}} =$ 7.7 GeV. In addition, we report the transverse momentum dependence of $v_1$ for protons and deuterons. The experimental results are compared with transport and coalescence models.
Rapidity-odd directed flow($v_1$) measurements for charged pions, protons and antiprotons near mid-rapidity ($y=0$) are reported in $sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au + Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). At intermediate impact parameters, the proton and net-proton slope parameter $dv_1/dy|_{y=0}$ shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton $dv_1/dy|_{y=0}$ changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient vone, are presented for transverse momenta $mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $mathrm{sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $mathrm{sqrt{s_{_{NN}}}}$, centrality and $mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $mathrm{p_T}$ dependencies of $mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $mathrm{v_3}$, could serve as constraints for initial-state models. The $mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of $sqrt{s_{_{NN}}} =$ 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
Directed flow of antiprotons is studied in Au+Au collisions at a beam momentum of 11.5A GeV/c. It is shown that antiproton directed flow is anti-correlated to proton flow. The measured transverse momentum dependence of the antiproton flow is compared with predictions of the RQMD event generator.
We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $sqrt{s_text{NN}} = $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $sqrt{s_text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $sqrt{s_text{NN}}= $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.