No Arabic abstract
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth make it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: ideally, methods that can scale data volumes adaptively so as to enable negotiation of performance and fidelity tradeoffs in different situations. Multigrid-based hierarchical data representations hold promise as a solution to this problem, allowing for flexible conversion between different fidelities so that, for example, data can be created at high fidelity and then transferred or stored at lower fidelity via logically simple and mathematically sound operations. However, the effective use of such representations has been hindered until now by the relatively high costs of creating, accessing, reducing, and otherwise operating on such representations. We describe here highly optimized data refactoring kernels for GPU accelerators that enable efficient creation and manipulation of data in multigrid-based hierarchical forms. We demonstrate that our optimized design can achieve up to 250 TB/s aggregated data refactoring throughput -- 83% of theoretical peak -- on 1024 nodes of the Summit supercomputer. We showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: ideally, methods that can scale data volumes adaptively so as to enable negotiation of performance and fidelity tradeoffs in different situations. Multigrid-based hierarchical data representations hold promise as a solution to this problem, allowing for flexible conversion between different fidelities so that, for example, data can be created at high fidelity and then transferred or stored at lower fidelity via logically simple and mathematically sound operations. However, the effective use of such representations has been hindered until now by the relatively high costs of creating, accessing, reducing, and otherwise operating on such representations. We describe here highly optimized data refactoring kernels for GPU accelerators that enable efficient creation and manipulation of data in multigrid-based hierarchical forms. We demonstrate that our optimized design can achieve up to 264 TB/s aggregated data refactoring throughput -- 92% of theoretical peak -- on 1024 nodes of the Summit supercomputer. We showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
Priority queue, often implemented as a heap, is an abstract data type that has been used in many well-known applications like Dijkstras shortest path algorithm, Prims minimum spanning tree, Huffman encoding, and the branch-and-bound algorithm. However, it is challenging to exploit the parallelism of the heap on GPUs since the control divergence and memory irregularity must be taken into account. In this paper, we present a parallel generalized heap model that works effectively on GPUs. We also prove the linearizability of our generalized heap model which enables us to reason about the expected results. We evaluate our concurrent heap thoroughly and show a maximum 19.49X speedup compared to the sequential CPU implementation and 2.11X speedup compared with the existing GPU implementation. We also apply our heap to single source shortest path with up to 1.23X speedup and 0/1 knapsack problem with up to 12.19X speedup.
Error-bounded lossy compression is a critical technique for significantly reducing scientific data volumes. With ever-emerging heterogeneous high-performance computing (HPC) architecture, GPU-accelerated error-bounded compressors (such as cuSZ+ and cuZFP) have been developed. However, they suffer from either low performance or low compression ratios. To this end, we propose cuSZ+ to target both high compression ratios and throughputs. We identify that data sparsity and data smoothness are key factors for high compression throughputs. Our key contributions in this work are fourfold: (1) We propose an efficient compression workflow to adaptively perform run-length encoding and/or variable-length encoding. (2) We derive Lorenzo reconstruction in decompression as multidimensional partial-sum computation and propose a fine-grained Lorenzo reconstruction algorithm for GPU architectures. (3) We carefully optimize each of cuSZ+ kernels by leveraging state-of-the-art CUDA parallel primitives. (4) We evaluate cuSZ+ using seven real-world HPC application datasets on V100 and A100 GPUs. Experiments show cuSZ+ improves the compression throughputs and ratios by up to 18.4X and 5.3X, respectively, over cuSZ on the tested datasets.
Stencil computations are widely used in HPC applications. Today, many HPC platforms use GPUs as accelerators. As a result, understanding how to perform stencil computations fast on GPUs is important. While implementation strategies for low-order stencils on GPUs have been well-studied in the literature, not all of proposed enhancements work well for high-order stencils, such as those used for seismic modeling. Furthermore, coping with boundary conditions often requires different computational logic, which complicates efficient exploitation of the thread-level parallelism on GPUs. In this paper, we study high-order stencils and their unique characteristics on GPUs. We manually crafted a collection of implementations of a 25-point seismic modeling stencil in CUDA and related boundary conditions. We evaluate their code shapes, memory hierarchy usage, data-fetching patterns, and other performance attributes. We conducted an empirical evaluation of these stencils using several mature and emerging tools and discuss our quantitative findings. Among our implementations, we achieve twice the performance of a proprietary code developed in C and mapped to GPUs using OpenACC. Additionally, several of our implementations have excellent performance portability.
In this paper, we propose a novel method to compute triangle counting on GPUs. Unlike previous formulations of graph matching, our approach is BFS-based by traversing the graph in an all-source-BFS manner and thus can be mapped onto GPUs in a massively parallel fashion. Our implementation uses the Gunrock programming model and we evaluate our implementation in runtime and memory consumption compared with previous state-of-the-art work. We sustain a peak traversed-edges-per-second (TEPS) rate of nearly 10 GTEPS. Our algorithm is the most scalable and parallel among all existing GPU implementations and also outperforms all existing CPU distributed implementations. This work specifically focuses on leveraging our implementation on the triangle counting problem for the Subgraph Isomorphism Graph Challenge 2019, demonstrating a geometric mean speedup over the 2018 champion of 3.84x.