No Arabic abstract
In frustrated quantum magnetism, chiral spin liquids are a particularly intriguing subset of quantum spin liquids in which the fractionalized parton degrees of freedom form a Chern insulator. Here we study an exactly solvable spin-3/2 model which harbors not only chiral spin liquids but also spin liquids with higher-order parton band topology -- a trivial band insulator, a Chern insulator with gapless chiral edge modes, and a second-order topological insulator with gapless corner modes. With a focus on the thermodynamic precursors and thermal phase transitions associated with these distinct states, we employ numerically exact quantum Monte Carlo simulations to reveal a number of unconventional phenomena. This includes a heightened thermal stability of the ground state phases, the emergence of a partial flux ordering of the associated $mathbb{Z}_2$ lattice gauge field, and the formation of a thermal Majorana metal regime extending over a broad temperature range.
Motivated by the recent synthesis of the spin-1 A-site spinel NiRh$_{text 2}$O$_{text 4}$, we investigate the classical to quantum crossover of a frustrated $J_1$-$J_2$ Heisenberg model on the diamond lattice upon varying the spin length $S$. Applying a recently developed pseudospin functional renormalization group (pf-FRG) approach for arbitrary spin-$S$ magnets, we find that systems with $S geq 3/2$ reside in the classical regime where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments $S$=1 or $S$=1/2 we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh$_{text 2}$O$_{text 4}$, a modified $J_1$-$J_2^-$-$J_2^perp$ exchange model is found to favor a conventionally ordered Neel state (for arbitrary spin $S$) even in the presence of a strong local single-ion spin anisotropy and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.
We study the spin transport through the quantum spin liquid (QSL) by investigating the real-time and real-space dynamics of the Kitaev spin system with a zigzag structure in terms of the time-dependent Majorana mean-field theory. After the magnetic field pulse is introduced to one of the edges, the spin moments are excited in the opposite edge region although no spin moments are induced in the Kitaev QSL region. This unusual spin transport originates from the fact that the $S=1/2$ spins are fractionalized into the itinerant and localized Majorana fermions in the Kitaev system. Although both Majorana fermions are excited by the magnetic pulse, only the itinerant Majorana fermions flow through the bulk regime without the spin excitation, resulting in the spin transport in the Kitaev system. We also demonstrate that this phenomenon can be observed even in the system with the Heisenberg interactions using the exact diagonalization.
We introduce a simple model of SO($N$) spins with two-site interactions which is amenable to quantum Monte-Carlo studies without a sign problem on non-bipartite lattices. We present numerical results for this model on the two-dimensional triangular lattice where we find evidence for a spin nematic at small $N$, a valence-bond solid (VBS) at large $N$ and a quantum spin liquid at intermediate $N$. By the introduction of a sign-free four-site interaction we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Remarkably, the spin ices provide one of very few experimentally realised examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, the spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterised by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focussing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.
We provide new insights into the Abelian and non-Abelian chiral Kitaev spin liquids on the star lattice using the recently proposed loop gas (LG) and string gas (SG) states [H.-Y. Lee, R. Kaneko, T. Okubo, N. Kawashima, Phys. Rev. Lett. 123, 087203 (2019)]. Those are compactly represented in the language of tensor network. By optimizing only one or two variational parameters, accurate ansatze are found in the whole phase diagram of the Kitaev model on the star lattice. In particular, the variational energy of the LG state becomes exact(within machine precision) at two limits in the model, and the criticality at one of those is analytically derived from the LG feature. It reveals that the Abelian CSLs are well demonstrated by the short-ranged LG while the non-Abelian CSLs are adiabatically connected to the critical LG where the macroscopic loops appear. Furthermore, by constructing the minimally entangled states and exploiting their entanglement spectrum and entropy, we identify the nature of anyons and the chiral edge modes in the non-Abelian phase with the Ising conformal field theory.