Do you want to publish a course? Click here

Spin nematics, valence-bond solids and spin liquids in SO($N$) quantum spin models on the triangular lattice

217   0   0.0 ( 0 )
 Added by Ribhu Kaul
 Publication date 2015
  fields Physics
and research's language is English
 Authors Ribhu K. Kaul




Ask ChatGPT about the research

We introduce a simple model of SO($N$) spins with two-site interactions which is amenable to quantum Monte-Carlo studies without a sign problem on non-bipartite lattices. We present numerical results for this model on the two-dimensional triangular lattice where we find evidence for a spin nematic at small $N$, a valence-bond solid (VBS) at large $N$ and a quantum spin liquid at intermediate $N$. By the introduction of a sign-free four-site interaction we uncover a rich phase diagram with evidence for both first-order and exotic continuous phase transitions.



rate research

Read More

251 - Sven Jandura , Mohsin Iqbal , 2020
We construct and study quantum trimer models and resonating SU(3)-singlet models on the kagome lattice, which generalize quantum dimer models and the Resonating Valence Bond wavefunctions to a trimer and SU(3) setting. We demonstrate that these models carry a Z_3 symmetry which originates in the structure of trimers and the SU(3) representation theory, and which becomes the only symmetry under renormalization. Based on this, we construct simple and exact parent Hamiltonians for the model which exhibit a topological 9-fold degenerate ground space. A combination of analytical reasoning and numerical analysis reveals that the quantum order ultimately displayed by the model depends on the relative weight assigned to different types of trimers -- it can display either Z_3 topological order or form a symmetry-broken trimer crystal, and in addition possesses a point with an enhanced U(1) symmetry and critical behavior. Our results accordingly hold for the SU(3) model, where the two natural choices for trimer weights give rise to either a topological spin liquid or a system with symmetry-broken order, respectively. Our work thus demonstrates the suitability of resonating trimer and SU(3)-singlet ansatzes to model SU(3) topological spin liquids on the kagome lattice.
We discuss a projector Monte Carlo method for quantum spin models formulated in the valence bond basis, using the S=1/2 Heisenberg antiferromagnet as an example. Its singlet ground state can be projected out of an arbitrary basis state as the trial state, but a more rapid convergence can be obtained using a good variational state. As an alternative to first carrying out a time consuming variational Monte Carlo calculation, we show that a very good trial state can be generated in an iterative fashion in the course of the simulation itself. We also show how the properties of the valence bond basis enable calculations of quantities that are difficult to obtain with the standard basis of Sz eigenstates. In particular, we discuss quantities involving finite-momentum states in the triplet sector, such as the dispersion relation and the spectral weight of the lowest triplet.
Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor $J_1$ and second-neighbor $J_2$ antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond solids) to obtain the ground-state phase diagram. Neel order is stabilized for small values of the frustrating second-neighbor coupling. Increasing the ratio $J_2/J_1$, we find strong evidence for a continuous transition to a nonmagnetic phase at $J_2/J_1 approx 0.23$. Close to the transition point, the Gutzwiller-projected uniform resonating valence bond state gives an excellent approximation to the exact ground-state energy. For $0.23 lesssim J_2/J_1 lesssim 0.4$, a gapless $Z_2$ spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped spin liquid considered in previous works has significantly higher variational energy. Although the plaquette valence-bond order is expected to be present as soon as the Neel order melts, this ordered state becomes clearly favored only for $J_2/J_1 gtrsim 0.3$. Finally, for $0.36 lesssim J_2/J_1 le 0.5$, a valence-bond solid with columnar order takes over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined quantum critical point separating the Neel antiferromagnet from the plaquette valence-bond solid.
Motivated by the recent synthesis of the spin-1 A-site spinel NiRh$_{text 2}$O$_{text 4}$, we investigate the classical to quantum crossover of a frustrated $J_1$-$J_2$ Heisenberg model on the diamond lattice upon varying the spin length $S$. Applying a recently developed pseudospin functional renormalization group (pf-FRG) approach for arbitrary spin-$S$ magnets, we find that systems with $S geq 3/2$ reside in the classical regime where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments $S$=1 or $S$=1/2 we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh$_{text 2}$O$_{text 4}$, a modified $J_1$-$J_2^-$-$J_2^perp$ exchange model is found to favor a conventionally ordered Neel state (for arbitrary spin $S$) even in the presence of a strong local single-ion spin anisotropy and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.
92 - Tarun Grover , T. Senthil 2007
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا