Do you want to publish a course? Click here

Bio-inspired sunlight-pumped lasers

68   0   0.0 ( 0 )
 Added by William Brown
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Though sunlight is by far the most abundant renewable energy source available to humanity, its dilute and variable nature has kept efficient ways to collect, store, and distribute this energy tantalisingly out of reach. Turning the incoherent energy supply of sunlight into a coherent laser beam would overcome several practical limitations inherent in using sunlight as a source of clean energy: laser beams travel nearly losslessly over large distances, and they are effective at driving chemical reactions which convert sunlight into chemical energy. Here we propose a bio-inspired blueprint for a novel type of laser with the aim of upgrading unconcentrated natural sunlight into a coherent laser beam. Our proposed design constitutes an improvement of several orders of magnitude over existing comparable technologies: state-of-the-art solar pumped lasers operate above 1000 suns (corresponding to 1000 times the natural sunlight power). In order to achieve lasing with the extremely dilute power provided by sunlight, we here propose a laser medium comprised of molecular aggregates inspired by the architecture of photosynthetic complexes. Such complexes, by exploiting a highly symmetric arrangement of molecules organized in a hierarchy of energy scales, exhibit a very large internal efficiency in harvesting photons from a power source as dilute as natural sunlight. Specifically, we consider substituting the reaction center of photosynthetic complexes in purple bacteria with a suitably engineered molecular dimer composed of two strongly coupled chromophores. We show that if pumped by the surrounding photosynthetic complex, which efficiently collects and concentrates solar energy, the core dimer structure can reach population inversion, and reach the lasing threshold under natural sunlight. The design principles proposed here will also pave the way for developing other bio-inspired quantum devices.



rate research

Read More

Deep convolutional neural networks (DCNNs) have revolutionized computer vision and are often advocated as good models of the human visual system. However, there are currently many shortcomings of DCNNs, which preclude them as a model of human vision. For example, in the case of adversarial attacks, where adding small amounts of noise to an image, including an object, can lead to strong misclassification of that object. But for humans, the noise is often invisible. If vulnerability to adversarial noise cannot be fixed, DCNNs cannot be taken as serious models of human vision. Many studies have tried to add features of the human visual system to DCNNs to make them robust against adversarial attacks. However, it is not fully clear whether human vision inspired components increase robustness because performance evaluations of these novel components in DCNNs are often inconclusive. We propose a set of criteria for proper evaluation and analyze different models according to these criteria. We finally sketch future efforts to make DCCNs one step closer to the model of human vision.
Researchers traditionally solve the computational problems through rigorous and deterministic algorithms called as Hard Computing. These precise algorithms have widely been realized using digital technology as an inherently reliable and accurate implementation platform, either in hardware or software forms. This rigid form of implementation which we refer as Hard Realization relies on strict algorithmic accuracy constraints dictated to digital design engineers. Hard realization admits paying as much as necessary implementation costs to preserve computation precision and determinism throughout all the design and implementation steps. Despite its prior accomplishments, this conventional paradigm has encountered serious challenges with todays emerging applications and implementation technologies. Unlike traditional hard computing, the emerging soft and bio-inspired algorithms do not rely on fully precise and deterministic computation. Moreover, the incoming nanotechnologies face increasing reliability issues that prevent them from being efficiently exploited in hard realization of applications. This article examines Soft Realization, a novel bio-inspired approach to design and implementation of an important category of applications noticing the internal brain structure. The proposed paradigm mitigates major weaknesses of hard realization by (1) alleviating incompatibilities with todays soft and bio-inspired algorithms such as artificial neural networks, fuzzy systems, and human sense signal processing applications, and (2) resolving the destructive inconsistency with unreliable nanotechnologies. Our experimental results on a set of well-known soft applications implemented using the proposed soft realization paradigm in both reliable and unreliable technologies indicate that significant energy, delay, and area savings can be obtained compared to the conventional implementation.
Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesis. However, one of the major challenges of fabricating bio-inspired hardware is building ultra-high density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bio-inspired computing include tunable fast non-linear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nano-devices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bio-inspired architectures that include one or several types of spintronic nanodevices. In this article we show how spintronics can be used for bio-inspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges towards fully integrated spintronics-CMOS (Complementary metal - oxide - semiconductor) bio-inspired hardware.
Word embeddings are a popular way to improve downstream performances in contemporary language modeling. However, the underlying geometric structure of the embedding space is not well understood. We present a series of explorations using bio-inspired methodology to traverse and visualize word embeddings, demonstrating evidence of discernible structure. Moreover, our model also produces word similarity rankings that are plausible yet very different from common similarity metrics, mainly cosine similarity and Euclidean distance. We show that our bio-inspired model can be used to investigate how different word embedding techniques result in different semantic outputs, which can emphasize or obscure particular interpretations in textual data.
Granular media (GM) present locomotor challenges for terrestrial and extraterrestrial devices because they can flow and solidify in response to localized intrusion of wheels, limbs, and bodies. While the development of airplanes and submarines is aided by understanding of hydrodynamics, fundamental theory does not yet exist to describe the complex interactions of locomotors with GM. In this paper, we use experimental, computational, and theoretical approaches to develop a terramechanics for bio-inspired locomotion in granular environments. We use a fluidized bed to prepare GM with a desired global packing fraction, and use empirical force measurements and the Discrete Element Method (DEM) to elucidate interaction mechanics during locomotion-relevant intrusions in GM such as vertical penetration and horizontal drag. We develop a resistive force theory (RFT) to account for more complex intrusions. We use these force models to understand the locomotor performance of two bio-inspired robots moving on and within GM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا