Do you want to publish a course? Click here

Quantum Fan-out: Circuit Optimizations and Technology Modeling

86   0   0.0 ( 0 )
 Added by Pranav Gokhale
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through __global interactions__. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out. Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7--24% reduction in error.



rate research

Read More

Currently available quantum computing hardware platforms have limited 2-qubit connectivity among their addressable qubits. In order to run a generic quantum algorithm on such a platform, one has to transform the initial logical quantum circuit describing the algorithm into an equivalent one that obeys the connectivity restrictions. In this work we construct a circuit synthesis scheme that takes as input the qubit connectivity graph and a quantum circuit over the gate set generated by ${text{CNOT},R_{Z}}$ and outputs a circuit that respects the connectivity of the device. As a concrete application, we apply our techniques to Googles Bristlecone 72-qubit quantum chip connectivity, IBMs Tokyo 20-qubit quantum chip connectivity, and Rigettis Acorn 19-qubit quantum chip connectivity. In addition, we also compare the performance of our scheme as a function of sparseness of randomly generated quantum circuits. Note: Recently, the authors of arXiv:1904.00633 independently presented a similar optimization scheme. Our work is independent of arXiv:1904.00633, being a longer version of the seminar presented by Beatrice Nash at the Dagstuhl Seminar 18381: Quantum Programming Languages, pg. 120, September 2018, Dagstuhl, Germany, slide deck available online at https://materials.dagstuhl.de/files/18/18381/18381.BeatriceNash.Slides.pdf.
118 - Peter Hoyer 2002
We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed basis (denoted by QNCf^0) can approximate with polynomially small error the following gates: parity, mod[q], And, Or, majority, threshold[t], exact[q], and Counting. Classically, we need logarithmic depth even if we can use unbounded fan-in gates. If we allow arbitrary one-qubit gates instead of a fixed basis, then these circuits can also be made exact in log-star depth. Sorting, arithmetical operations, phase estimation, and the quantum Fourier transform with arbitrary moduli can also be approximated in constant depth.
244 - Jeffrey Booth Jr 2012
A quantum computer consists of a set of quantum bits upon which operations called gates are applied to perform computations. In order to perform quantum algorithms, physicists would like to design arbitrary gates to apply to quantum bits. However, the physical limitations of the quantum computing device restrict the set of gates that physicists are able to apply. Thus, they must compose a sequence of gates from the permitted gate set, which approximates the gate they wish to apply - a process called quantum compiling. Austin Fowler proposes a method that finds optimal gate sequences in exponential time, but which is tractable for common problems. In this paper, I present several optimizations to this algorithm. While my optimizations do not improve its overall exponential behavior, they improve its empirical performance by one to two orders of magnitude.
148 - Hendra I. Nurdin 2019
This brief article gives an overview of quantum mechanics as a {em quantum probability theory}. It begins with a review of the basic operator-algebraic elements that connect probability theory with quantum probability theory. Then quantum stochastic processes is formulated as a generalization of stochastic processes within the framework of quantum probability theory. Quantum Markov models from quantum optics are used to explicitly illustrate the underlying abstract concepts and their connections to the quantum regression theorem from quantum optics.
A Lyapunov-based method is presented for stabilizing and controlling of closed quantum systems. The proposed method is constructed upon a novel quantum Lyapunov function of the system state trajectory tracking error. A positive-definite operator in the Lyapunov function provides additional degrees of freedom for the designer. The stabilization process is analyzed regarding two distinct cases for this operator in terms of its vanishing or non-vanishing commutation with the Hamiltonian operator of the undriven quantum system. To cope with the global phase invariance of quantum states as a result of the quantum projective measurement postulate, equivalence classes of quantum states are defined and used in the proposed Lyapunov-based analysis and design. Results show significant improvement in both the set of stabilizable quantum systems and their invariant sets of state trajectories generated by designed control signals. The proposed method can potentially be applied for high-fidelity quantum control purposes in quantum computing frameworks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا