Do you want to publish a course? Click here

On the Analysis of Model-free Methods for the Linear Quadratic Regulator

153   0   0.0 ( 0 )
 Added by Zeyu Jin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Many reinforcement learning methods achieve great success in practice but lack theoretical foundation. In this paper, we study the convergence analysis on the problem of the Linear Quadratic Regulator (LQR). The global linear convergence properties and sample complexities are established for several popular algorithms such as the policy gradient algorithm, TD-learning and the actor-critic (AC) algorithm. Our results show that the actor-critic algorithm can reduce the sample complexity compared with the policy gradient algorithm. Although our analysis is still preliminary, it explains the benefit of AC algorithm in a certain sense.



rate research

Read More

Model-free reinforcement learning attempts to find an optimal control action for an unknown dynamical system by directly searching over the parameter space of controllers. The convergence behavior and statistical properties of these approaches are often poorly understood because of the nonconvex nature of the underlying optimization problems and the lack of exact gradient computation. In this paper, we take a step towards demystifying the performance and efficiency of such methods by focusing on the standard infinite-horizon linear quadratic regulator problem for continuous-time systems with unknown state-space parameters. We establish exponential stability for the ordinary differential equation (ODE) that governs the gradient-flow dynamics over the set of stabilizing feedback gains and show that a similar result holds for the gradient descent method that arises from the forward Euler discretization of the corresponding ODE. We also provide theoretical bounds on the convergence rate and sample complexity of the random search method with two-point gradient estimates. We prove that the required simulation time for achieving $epsilon$-accuracy in the model-free setup and the total number of function evaluations both scale as $log , (1/epsilon)$.
205 - Feiran Zhao , Keyou You 2020
Risk-aware control, though with promise to tackle unexpected events, requires a known exact dynamical model. In this work, we propose a model-free framework to learn a risk-aware controller with a focus on the linear system. We formulate it as a discrete-time infinite-horizon LQR problem with a state predictive variance constraint. To solve it, we parameterize the policy with a feedback gain pair and leverage primal-dual methods to optimize it by solely using data. We first study the optimization landscape of the Lagrangian function and establish the strong duality in spite of its non-convex nature. Alongside, we find that the Lagrangian function enjoys an important local gradient dominance property, which is then exploited to develop a convergent random search algorithm to learn the dual function. Furthermore, we propose a primal-dual algorithm with global convergence to learn the optimal policy-multiplier pair. Finally, we validate our results via simulations.
We explore reinforcement learning methods for finding the optimal policy in the linear quadratic regulator (LQR) problem. In particular, we consider the convergence of policy gradient methods in the setting of known and unknown parameters. We are able to produce a global linear convergence guarantee for this approach in the setting of finite time horizon and stochastic state dynamics under weak assumptions. The convergence of a projected policy gradient method is also established in order to handle problems with constraints. We illustrate the performance of the algorithm with two examples. The first example is the optimal liquidation of a holding in an asset. We show results for the case where we assume a model for the underlying dynamics and where we apply the method to the data directly. The empirical evidence suggests that the policy gradient method can learn the global optimal solution for a larger class of stochastic systems containing the LQR framework and that it is more robust with respect to model mis-specification when compared to a model-based approach. The second example is an LQR system in a higher dimensional setting with synthetic data.
The behaviour of a stochastic dynamical system may be largely influenced by those low-probability, yet extreme events. To address such occurrences, this paper proposes an infinite-horizon risk-constrained Linear Quadratic Regulator (LQR) framework with time-average cost. In addition to the standard LQR objective, the average one-stage predictive variance of the state penalty is constrained to lie within a user-specified level. By leveraging the duality, its optimal solution is first shown to be stationary and affine in the state, i.e., $u(x,lambda^*) = -K(lambda^*)x + l(lambda^*)$, where $lambda^*$ is an optimal multiplier, used to address the risk constraint. Then, we establish the stability of the resulting closed-loop system. Furthermore, we propose a primal-dual method with sublinear convergence rate to find an optimal policy $u(x,lambda^*)$. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed framework and the primal-dual method.
This paper studies the problem of steering a linear time-invariant system subject to state and input constraints towards a goal location that may be inferred only through partial observations. We assume mixed-observable settings, where the systems state is fully observable and the environments state defining the goal location is only partially observed. In these settings, the planning problem is an infinite-dimensional optimization problem where the objective is to minimize the expected cost. We show how to reformulate the control problem as a finite-dimensional deterministic problem by optimizing over a trajectory tree. Leveraging this result, we demonstrate that when the environment is static, the observation model piecewise, and cost function convex, the original control problem can be reformulated as a Mixed-Integer Convex Program (MICP) that can be solved to global optimality using a branch-and-bound algorithm. The effectiveness of the proposed approach is demonstrated on navigation tasks, where the system has to reach a goal location identified from partial observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا