Do you want to publish a course? Click here

Infinite-horizon Risk-constrained Linear Quadratic Regulator with Average Cost

367   0   0.0 ( 0 )
 Added by Feiran Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The behaviour of a stochastic dynamical system may be largely influenced by those low-probability, yet extreme events. To address such occurrences, this paper proposes an infinite-horizon risk-constrained Linear Quadratic Regulator (LQR) framework with time-average cost. In addition to the standard LQR objective, the average one-stage predictive variance of the state penalty is constrained to lie within a user-specified level. By leveraging the duality, its optimal solution is first shown to be stationary and affine in the state, i.e., $u(x,lambda^*) = -K(lambda^*)x + l(lambda^*)$, where $lambda^*$ is an optimal multiplier, used to address the risk constraint. Then, we establish the stability of the resulting closed-loop system. Furthermore, we propose a primal-dual method with sublinear convergence rate to find an optimal policy $u(x,lambda^*)$. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed framework and the primal-dual method.



rate research

Read More

We propose a new risk-constrained reformulation of the standard Linear Quadratic Regulator (LQR) problem. Our framework is motivated by the fact that the classical (risk-neutral) LQR controller, although optimal in expectation, might be ineffective under relatively infrequent, yet statistically significant (risky) events. To effectively trade between average and extreme event performance, we introduce a new risk constraint, which explicitly restricts the total expected predictive variance of the state penalty by a user-prescribed level. We show that, under rather minimal conditions on the process noise (i.e., finite fourth-order moments), the optimal risk-aware controller can be evaluated explicitly and in closed form. In fact, it is affine relative to the state, and is always internally stable regardless of parameter tuning. Our new risk-aware controller: i) pushes the state away from directions where the noise exhibits heavy tails, by exploiting the third-order moment (skewness) of the noise; ii) inflates the state penalty in riskier directions, where both the noise covariance and the state penalty are simultaneously large. The properties of the proposed risk-aware LQR framework are also illustrated via indicative numerical examples.
205 - Feiran Zhao , Keyou You 2020
Risk-aware control, though with promise to tackle unexpected events, requires a known exact dynamical model. In this work, we propose a model-free framework to learn a risk-aware controller with a focus on the linear system. We formulate it as a discrete-time infinite-horizon LQR problem with a state predictive variance constraint. To solve it, we parameterize the policy with a feedback gain pair and leverage primal-dual methods to optimize it by solely using data. We first study the optimization landscape of the Lagrangian function and establish the strong duality in spite of its non-convex nature. Alongside, we find that the Lagrangian function enjoys an important local gradient dominance property, which is then exploited to develop a convergent random search algorithm to learn the dual function. Furthermore, we propose a primal-dual algorithm with global convergence to learn the optimal policy-multiplier pair. Finally, we validate our results via simulations.
We analyze the infinite horizon minimax average cost Markov Control Model (MCM), for a class of controlled process conditional distributions, which belong to a ball, with respect to total variation distance metric, centered at a known nominal controlled conditional distribution with radius $Rin [0,2]$, in which the minimization is over the control strategies and the maximization is over conditional distributions. Upon performing the maximization, a dynamic programming equation is obtained which includes, in addition to the standard terms, the oscillator semi-norm of the cost-to-go. First, the dynamic programming equation is analyzed for finite state and control spaces. We show that if the nominal controlled process distribution is irreducible, then for every stationary Markov control policy the maximizing conditional distribution of the controlled process is also irreducible for $R in [0,R_{max}]$. Second, the generalized dynamic programming is analyzed for Borel spaces. We derive necessary and sufficient conditions for any control strategy to be optimal. Through our analysis, new dynamic programming equations and new policy iteration algorithms are derived. The main feature of the new policy iteration algorithms (which are applied for finite alphabet spaces) is that the policy evaluation and policy improvement steps are performed by using the maximizing conditional distribution, which is obtained via a water filling solution. Finally, the application of the new dynamic programming equations and the corresponding policy iteration algorithms are shown via illustrative examples.
This paper studies the problem of steering a linear time-invariant system subject to state and input constraints towards a goal location that may be inferred only through partial observations. We assume mixed-observable settings, where the systems state is fully observable and the environments state defining the goal location is only partially observed. In these settings, the planning problem is an infinite-dimensional optimization problem where the objective is to minimize the expected cost. We show how to reformulate the control problem as a finite-dimensional deterministic problem by optimizing over a trajectory tree. Leveraging this result, we demonstrate that when the environment is static, the observation model piecewise, and cost function convex, the original control problem can be reformulated as a Mixed-Integer Convex Program (MICP) that can be solved to global optimality using a branch-and-bound algorithm. The effectiveness of the proposed approach is demonstrated on navigation tasks, where the system has to reach a goal location identified from partial observations.
While the techniques in optimal control theory are often model-based, the policy optimization (PO) approach can directly optimize the performance metric of interest without explicit dynamical models, and is an essential approach for reinforcement learning problems. However, it usually leads to a non-convex optimization problem in most cases, where there is little theoretical understanding on its performance. In this paper, we focus on the risk-constrained Linear Quadratic Regulator (LQR) problem with noisy input via the PO approach, which results in a challenging non-convex problem. To this end, we first build on our earlier result that the optimal policy has an affine structure to show that the associated Lagrangian function is locally gradient dominated with respect to the policy, based on which we establish strong duality. Then, we design policy gradient primal-dual methods with global convergence guarantees to find an optimal policy-multiplier pair in both model-based and sample-based settings. Finally, we use samples of system trajectories in simulations to validate our policy gradient primal-dual methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا