No Arabic abstract
Quantum spin systems exhibit an enormous range of collective excitations, but their spin waves, gapped triplons, fractional spinons, or yet other modes are generally held to be mutually exclusive. Here we show by neutron spectroscopy on SeCuO$_3$ that magnons, triplons, and spinons are present simultaneously. We demonstrate that this is a consequence of a structure consisting of two coupled subsystems and identify all the interactions of a minimal magnetic model. Our results serve qualitatively to open the field of multi-excitation spin systems and quantitatively to constrain the complete theoretical description of one member of this class of materials.
In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations and Random Phase Approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu2(OH)3Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic Spin-1/2 chains with weak inter-chain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles, magnons and spinons.
We investigate magnetic excitations in the frustrated zigzag spin-1/2 chain compound $beta$-TeVO$_4$ by inelastic neutron scattering. In the magnetically ordered ground state, the excitation spectrum exhibits coexisting magnon dispersion, characteristic of long-range magnetic order, and a spinon-like continuum that prevails above 2 meV, indicating the dominance of intrachain interactions. Combining linear-spin-wave-theory and pre-calculated spinon-continuum results, we reproduce the experimental spectrum. Our analysis offers a minimal exchange-network model which determines dominant intrachain interactions, their anisotropies and weak interchain interactions. The obtained parameters explain the magnetic ordering vector and spin excitations in the magnetic ground state.
We have measured the thermal conductivity along different directions of the S = 1/2 one-dimensional (1D) spin system Sr2V3O9 in magnetic fields up to 14 T. It has been found that the thermal conductivity along the [10-1] direction, k{appa}[10-1], is large and markedly suppressed by the application of magnetic field, indicating that there is a large contribution of spinons to k{appa}[10-1] and that the spin chains run along the [10-1] direction. The maximum value of the thermal conductivity due to spinons is ~14 W/Km along the [10-1] direction, supporting the empirical law that the magnitude of the thermal conductivity due to spinons is roughly proportional to the antiferromagnetic interaction between the nearest neighboring spins.
We calculate the effect of the emergent photon on threshold production of spinons in $U(1)$ Coulomb spin liquids such as quantum spin ice. The emergent Coulomb interaction modifies the threshold production cross-section dramatically, changing the weak turn-on expected from the density of states to an abrupt onset reflecting the basic coupling parameters. The slow photon typical in existing lattice models and materials suppresses the intensity at finite momentum and allows profuse Cerenkov radiation beyond a critical momentum. These features are broadly consistent with recent numerical and experimental results.
Observing constituent particles with fractional quantum numbers in confined and deconfined states is an interesting and challenging problem in quantum many-body physics. Here we further explore a computational scheme [Y. Tang and A. W. Sandvik, Phys. Rev. Lett. {bf 107}, 157201 (2011)] based on valence-bond quantum Monte Carlo simulations of quantum spin systems. Using several different one-dimensional models, we characterize $S=1/2$ spinon excitations using the spinon size and confinement length (the size of a bound state). The spinons have finite size in valence-bond-solid states, infinite size in the critical region, and become ill-defined in the Neel state. We also verify that pairs of spinons are deconfined in these uniform spin chains but become confined upon introducing a pattern of alternating coupling strengths (dimerization) or coupling two chains (forming a ladder). In the dimerized system an individual spinon can be small when the confinement length is large---this is the case when the imposed dimerization is weak but the ground state of the corresponding uniform chain is a spontaneously formed valence-bond-solid (where the spinons are deconfined). Based on our numerical results, we argue that the situation $lambda ll Lambda$ is associated with weak repulsive short-range spinon-spinon interactions. In principle both the length-scales can be individually tuned from small to infinite (with $lambda le Lambda$) by varying model parameters. In the ladder system the two lengths are always similar, and this is the case also in the dimerized systems when the corresponding uniform chain is in the critical phase. In these systems the effective spinon-spinon interactions are purely attractive and there is only a single large length scale close to criticality, which is reflected in the standard spin correlations as well as in the spinon characteristics.