Do you want to publish a course? Click here

The Role of Active Galactic Nuclei in the Quenching of Massive Galaxies in the SQuiGGLE Survey

69   0   0.0 ( 0 )
 Added by Jenny Greene
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the incidence of nuclear activity in a large sample of massive post-starburst galaxies at z~0.7 selected from the Sloan Digital Sky Survey, and identify active galactic nuclei based on radio continuum and optical emission lines. Over our mass range of 10^10.6-10^11.5 Msun, the incidence of radio activity is weakly dependent on stellar mass and independent of stellar age, while radio luminosity depends strongly on stellar mass. Optical nuclear activity incidence depends most strongly on the Dn4000 line index, a proxy for stellar age, with an active fraction that is ~ten times higher in the youngest versus oldest post-starburst galaxies. Since a similar trend is seen between age and molecular gas fractions, we argue that, like in local galaxies, the age trend reflects a peak in available fueling rather than feedback from the central black hole on the surrounding galaxy.



rate research

Read More

We investigate the astrophysics of radio-emitting star-forming galaxies and ac- tive galactic nuclei (AGNs), and elucidate their statistical properties in the radio band including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, that will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. (2016a,b) to compute the star formation rate functions, the AGN duty cycles and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated to star formation and nuclear activity, we compute relevant statistics at different radio frequencies, and disentangle the relative con- tribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions, and to occupy different loci in the galaxy main sequence diagrams. These specific predictions are consistent with current datasets, but need to be tested with larger statistics via future radio data with multi-band coverage on wide areas, as it will become routinely achievable with the advent of the SKA and its precursors.
144 - E. K. S. Hicks 2009
In a sample of local active galactic nuclei studied at a spatial resolution on the order of 10 pc we show that the interstellar medium traced by the molecular hydrogen v=1-0 S(1) 2.1um line forms a geometrically thick, clumpy disk. The kinematics of the molecular gas reveals general rotation, although an additional significant component of random bulk motion is required by the high local velocity dispersion. The size scale of the typical gas disk is found to have a radius of ~30 pc with a comparable vertical height. Within this radius the average gas mass is estimated to be ~10^7 Msun based on a typical gas mass fraction of 10%, which suggests column densities of Nh ~ 5x10^23 cm^-2. Extinction of the stellar continuum within this same region suggest lower column densities of Nh ~ 2x10^22 cm^-2, indicating that the gas distribution on these scales is dominated by dense clumps. In half of the observed Seyfert galaxies this lower column density is still great enough to obscure the AGN at optical/infrared wavelengths. We conclude, based on the spatial distribution, kinematics, and column densities that the molecular gas observed is spatially mixed with the nuclear stellar population and is likely to be associated with the outer extent of any smaller scale nuclear obscuring structure. Furthermore, we find that the velocity dispersion of the molecular gas is correlated with the star formation rate per unit area, suggesting a link between the two phenomena, and that the gas surface density follows known Schmidt-Kennicutt relations. The molecular/dusty structure on these scales may be dynamic since it is possible that the velocity dispersion of the gas, and hence the vertical disk height, is maintained by a short, massive inflow of material into the nuclear region and/or by intense, short-lived nuclear star formation.
We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of $r_{500}$. Our analysis employs high quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of $0.2 < z < 0.7$. In total, our study involves 176 AGN with bright ($R <23$) optical counterparts above a $0.5-8.0$ keV flux limit of $10^{-14} rm{erg} rm{cm}^{-2} rm{s}^{-1}$. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is $sim 3 $ times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at $sim 2.5 r_{500}$. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.
We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disk-dominated and bulge-dominated galaxies is related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle, and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN.
We present an analysis of the radial distribution of Active Galactic Nuclei (AGN) in $2300$ galaxy clusters from the Massive and Distant Clusters of {it WISE} Survey (MaDCoWS). MaDCoWS provides the largest coverage of the extragalactic sky for a cluster sample at $zsim1$. We use literature catalogs of AGN selected via optical, mid-infrared (MIR), and radio data, and by optical-to-MIR (OIR) color. Stacking the radial distribution of AGN within the $6arcmin$ of the centers of MaDCoWS galaxy clusters, we find a distinct overdensity of AGN within $1arcmin$ of the galaxy cluster center for AGN of all selection methods. The fraction of red galaxies that host AGN as a function of clustercentric distance is, however, dependent on the AGN selection. The fraction of red galaxies in cluster environments that host AGN selected by optical signatures or blue OIR color is at a deficit compared to the field, while MIR-selected and red OIR color AGN are enhanced in the centers of clusters when compared to field levels. The radio-selected AGN fraction is more than $2.5$ times that of the field, implying that the centers of clusters are conducive to the triggering of radio emission in AGN. We do not find a statistically significant change in the AGN fraction as a function of cluster richness. We also investigate the correlation of central radio activity with other AGN in galaxy clusters. Clusters with radio activity have more central AGN than radio-inactive clusters, implying that central cluster radio activity and AGN triggering may be linked.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا