Do you want to publish a course? Click here

The Role of Molecular Gas in Obscuring Seyfert Active Galactic Nuclei

113   0   0.0 ( 0 )
 Added by Erin K. S. Hicks
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a sample of local active galactic nuclei studied at a spatial resolution on the order of 10 pc we show that the interstellar medium traced by the molecular hydrogen v=1-0 S(1) 2.1um line forms a geometrically thick, clumpy disk. The kinematics of the molecular gas reveals general rotation, although an additional significant component of random bulk motion is required by the high local velocity dispersion. The size scale of the typical gas disk is found to have a radius of ~30 pc with a comparable vertical height. Within this radius the average gas mass is estimated to be ~10^7 Msun based on a typical gas mass fraction of 10%, which suggests column densities of Nh ~ 5x10^23 cm^-2. Extinction of the stellar continuum within this same region suggest lower column densities of Nh ~ 2x10^22 cm^-2, indicating that the gas distribution on these scales is dominated by dense clumps. In half of the observed Seyfert galaxies this lower column density is still great enough to obscure the AGN at optical/infrared wavelengths. We conclude, based on the spatial distribution, kinematics, and column densities that the molecular gas observed is spatially mixed with the nuclear stellar population and is likely to be associated with the outer extent of any smaller scale nuclear obscuring structure. Furthermore, we find that the velocity dispersion of the molecular gas is correlated with the star formation rate per unit area, suggesting a link between the two phenomena, and that the gas surface density follows known Schmidt-Kennicutt relations. The molecular/dusty structure on these scales may be dynamic since it is possible that the velocity dispersion of the gas, and hence the vertical disk height, is maintained by a short, massive inflow of material into the nuclear region and/or by intense, short-lived nuclear star formation.

rate research

Read More

122 - K.I. Caputi 2014
The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for the study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that it should be possible to address with forthcoming IR telescopes.
Dedicated searches generally find a decreasing fraction of obscured Active Galactic Nuclei (AGN) with increasing AGN luminosity. This has often been interpreted as evidence for a decrease of the covering factor of the AGN torus with increasing luminosity, the so-called receding torus models. Using a complete flux-limited X-ray selected sample of 199 AGN, from the Bright Ultra-hard XMM-Newton Survey, we determine the intrinsic fraction of optical type-2 AGN at 0.05$leq$z$leq$1 as a function of rest-frame 2-10 keV X-ray luminosity from 10$^{42}$ to 10$^{45}$ erg/s. We use the distributions of covering factors of AGN tori derived from CLUMPY torus models. Since these distributions combined over the total AGN population need to match the intrinsic type-2 AGN fraction, we reveal a population of X-ray undetected objects with high-covering factor tori, which are increasingly numerous at higher AGN luminosities. When these missing objects are included, we find that Compton-thick AGN account at most for 37$_{-10}^{+9}$% of the total population. The intrinsic type-2 AGN fraction is 58$pm$4% and has a weak, non-significant (less than 2$sigma$) luminosity dependence. This contradicts the results generally reported by AGN surveys, and the expectations from receding torus models. Our findings imply that the majority of luminous rapidly-accreting supermassive black holes at z<1 reside in highly-obscured nuclear environments but most of them are so deeply embedded that they have so far escaped detection in X-rays in <10 keV wide-area surveys.
131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accretion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
Active Galactic Nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different flavours in the literature that now comprise a complex and confusing AGN zoo. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN, and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their big picture through observations in each electromagnetic band from radio to gamma-rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.
284 - Steve Kraemer 2009
There are several key open questions as to the nature and origin of AGN including: 1) what initiates the active phase, 2) the duration of the active phase, and 3) the effect of the AGN on the host galaxy. Critical new insights to these can be achieved by probing the central regions of AGN with sub-mas angular resolution at UV/optical wavelengths. In particular, such observations would enable us to constrain the energetics of the AGN feedback mechanism, which is critical for understanding the role of AGN in galaxy formation and evolution. These observations can only be obtained by long-baseline interferometers or sparse aperture telescopes in space, since the aperture diameters required are in excess of 500 m - a regime in which monolithic or segmented designs are not and will not be feasible and because these observations require the detection of faint emission near the bright unresolved continuum source, which is impossible from the ground, even with adaptive optics. Two mission concepts which could provide these invaluable observations are NASAs Stellar Imager (SI; Carpenter et al. 2008 & http://hires.gsfc.nasa.gov/si/) interferometer and ESAs Luciola (Labeyrie 2008) sparse aperture hypertelescope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا