We study Liouville-type theorems and the asymptotic behaviour of positive solutions near an isolated singular point $zetainpartialOmegacup{infty}$ of the quasilinear elliptic equations $$-text{div}(| abla u|_A^{p-2}A abla u)+V|u|^{p-2}u =0quadtext{in } Omegasetminus{zeta},$$ where $Omega$ is a domain in $mathbb{R}^d$ ($dgeq 2$), and $A=(a_{ij})in L_{rm loc}^{infty}(Omega;mathbb{R}^{dtimes d})$ is a symmetric and locally uniformly positive definite matrix. The potential $V$ lies in a certain local Morrey space (depending on $p$) and has a Fuchsian-type isolated singularity at $zeta$.
We classify stable and finite Morse index solutions to general semilinear elliptic equations posed in Euclidean space of dimension at most 10, or in some unbounded domains.
We present some results concerning the solvability of linear elliptic equations in bounded domains with the main coefficients almost in VMO, the drift and the free terms in Morrey classes containing $L_{d}$, and bounded zeroth order coefficient. We prove that the second-order derivatives of solutions are in a local Morrey class containing $W^{2}_{p,loc}$. Actually, the exposition is given for fully nonlinear equations and encompasses the above mentioned results, which are new even if the main part of the equation is just the Laplacian.
We prove in this paper the global Lorentz estimate in term of fractional-maximal function for gradient of weak solutions to a class of p-Laplace elliptic equations containing a non-negative Schrodinger potential which belongs to reverse Holder classes. In particular, this class of p-Laplace operator includes both degenerate and non-degenerate cases. The interesting idea is to use an efficient approach based on the level-set inequality related to the distribution function in harmonic analysis.
We prove that the Dirichlet problem for the Lane-Emden equation in a half-space has no positive solution which is monotone in the normal direction. As a consequence, this problem does not admit any positive classical solution which is bounded on finite strips. This question has a long history and our result solves a long-standing open problem. Such a nonexistence result was previously available only for bounded solutions, or under a restriction on the power in the nonlinearity. The result extends to general convex nonlinearities.
In this article we present a simple and unified probabilistic approach to prove nonexistence of positive super-solutions for systems of equations involving potential terms and the fractional Laplacian in an exterior domain. Such problems arise in the analysis of a priori estimates of solutions. The class of problems we consider in this article is quite general compared to the literature. The main ingredient for our proofs is the hitting time estimates for the symmetric $alpha$-stable process and probabilistic representation of the super-solutions.
Ratan Kr. Giri
,Yehuda Pinchover
.
(2020)
.
"Positive Liouville theorem and asymptotic behaviour for $(p,A)$-Laplacian type elliptic equations with Fuchsian potentials in Morrey space"
.
Ratan Kumar Giri
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا