Do you want to publish a course? Click here

Linear and fully nonlinear elliptic equations with Morrey drift

186   0   0.0 ( 0 )
 Added by Nicolai Krylov
 Publication date 2021
  fields
and research's language is English
 Authors N.V. Krylov




Ask ChatGPT about the research

We present some results concerning the solvability of linear elliptic equations in bounded domains with the main coefficients almost in VMO, the drift and the free terms in Morrey classes containing $L_{d}$, and bounded zeroth order coefficient. We prove that the second-order derivatives of solutions are in a local Morrey class containing $W^{2}_{p,loc}$. Actually, the exposition is given for fully nonlinear equations and encompasses the above mentioned results, which are new even if the main part of the equation is just the Laplacian.



rate research

Read More

83 - N.V. Krylov 2020
In subdomains of $mathbb{R}^{d}$ we consider uniformly elliptic equations $Hbig(v( x),D v( x),D^{2}v( x), xbig)=0$ with the growth of $H$ with respect to $|Dv|$ controlled by the product of a function from $L_{d}$ times $|Dv|$. The dependence of $H$ on $x$ is assumed to be of BMO type. Among other things we prove that there exists $d_{0}in(d/2,d)$ such that for any $pin(d_{0},d)$ the equation with prescribed continuous boundary data has a solution in class $W^{2}_{p,text{loc}}$. Our results are new even if $H$ is linear.
108 - Hongjie Dong , N. V. Krylov 2021
In this note, we obtain a version of Aleksandrovs maximum principle when the drift coefficients are in Morrey spaces, which contains $L_d$, and when the free term is in $L_p$ for some $p<d$.
94 - Rirong Yuan 2021
Under structural conditions which are almost optimal, we derive a quantitative version of boundary estimate then prove existence of solutions to Dirichlet problem for a class of fully nonlinear elliptic equations on Hermitian manifolds.
87 - Bo Guan , Xiaolan Nie 2021
We derive a priori second order estimates for fully nonlinear elliptic equations which depend on the gradients of solutions in critical ways on Hermitian manifolds. The global estimates we obtained apply to an equation arising from a conjecture by Gauduchon which extends the Calabi conjecture; this was one of the original motivations to this work. We were also motivated by the fact that there had been increasing interests in fully nonlinear pdes from complex geometry in recent years, and aimed to develop general methods to cover as wide a class of equations as possible.
132 - Xiuxiong Chen , Weiyong He 2018
In this paper we consider a class of fully nonlinear equations which cover the equation introduced by S. Donaldson a decade ago and the equation introduced by Gursky-Streets recently. We solve the equation with uniform weak $C^2$ estimates, which hold for degenerate case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا