Do you want to publish a course? Click here

CardioLearn: A Cloud Deep Learning Service for Cardiac Disease Detection from Electrocardiogram

221   0   0.0 ( 0 )
 Added by Shenda Hong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Electrocardiogram (ECG) is one of the most convenient and non-invasive tools for monitoring peoples heart condition, which can use for diagnosing a wide range of heart diseases, including Cardiac Arrhythmia, Acute Coronary Syndrome, et al. However, traditional ECG disease detection models show substantial rates of misdiagnosis due to the limitations of the abilities of extracted features. Recent deep learning methods have shown significant advantages, but they do not provide publicly available services for those who have no training data or computational resources. In this paper, we demonstrate our work on building, training, and serving such out-of-the-box cloud deep learning service for cardiac disease detection from ECG named CardioLearn. The analytic ability of any other ECG recording devices can be enhanced by connecting to the Internet and invoke our open API. As a practical example, we also design a portable smart hardware device along with an interactive mobile program, which can collect ECG and detect potential cardiac diseases anytime and anywhere.



rate research

Read More

Background:The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. Objective:This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives. Methods:We extracted papers that applied deep learning (deep neural network) models to ECG data that were published between Jan. 1st of 2010 and Feb. 29th of 2020 from Google Scholar, PubMed, and the DBLP. We then analyzed each article according to three factors: tasks, models, and data. Finally, we discuss open challenges and unsolved problems in this area. Results: The total number of papers extracted was 191. Among these papers, 108 were published after 2019. Different deep learning architectures have been used in various ECG analytics tasks, such as disease detection/classification, annotation/localization, sleep staging, biometric human identification, and denoising. Conclusion: The number of works on deep learning for ECG data has grown explosively in recent years. Such works have achieved accuracy comparable to that of traditional feature-based approaches and ensembles of multiple approaches can achieve even better results. Specifically, we found that a hybrid architecture of a convolutional neural network and recurrent neural network ensemble using expert features yields the best results. However, there are some new challenges and problems related to interpretability, scalability, and efficiency that must be addressed. Furthermore, it is also worth investigating new applications from the perspectives of datasets and methods. Significance: This paper summarizes existing deep learning research using ECG data from multiple perspectives and highlights existing challenges and problems to identify potential future research directions.
Objectives: Atrial fibrillation (AF) is a common heart rhythm disorder associated with deadly and debilitating consequences including heart failure, stroke, poor mental health, reduced quality of life and death. Having an automatic system that diagnoses various types of cardiac arrhythmias would assist cardiologists to initiate appropriate preventive measures and to improve the analysis of cardiac disease. To this end, this paper introduces a new approach to detect and classify automatically cardiac arrhythmias in electrocardiograms (ECG) recordings. Methods: The proposed approach used a combination of Convolution Neural Networks (CNNs) and a sequence of Long Short-Term Memory (LSTM) units, with pooling, dropout and normalization techniques to improve their accuracy. The network predicted a classification at every 18th input sample and we selected the final prediction for classification. Results were cross-validated on the Physionet Challenge 2017 training dataset, which contains 8,528 single lead ECG recordings lasting from 9s to just over 60s. Results: Using the proposed structure and no explicit feature selection, 10-fold stratified cross-validation gave an overall F-measure of 0.83.10-0.015 on the held-out test data (mean-standard deviation over all folds) and 0.80 on the hidden dataset of the Challenge entry server.
Automatic detection of R-peaks in an Electrocardiogram signal is crucial in a multitude of applications including Heart Rate Variability (HRV) analysis and Cardio Vascular Disease(CVD) diagnosis. Although there have been numerous approaches that have successfully addressed the problem, there has been a notable dip in the performance of these existing detectors on ECG episodes that contain noise and HRV Irregulates. On the other hand, Deep Learning(DL) based methods have shown to be adept at modelling data that contain noise. In image to image translation, Unet is the fundamental block in many of the networks. In this work, a novel application of the Unet combined with Inception and Residual blocks is proposed to perform the extraction of R-peaks from an ECG. Furthermore, the problem formulation also robustly deals with issues of variability and sparsity of ECG R-peaks. The proposed network was trained on a database containing ECG episodes that have CVD and was tested against three traditional ECG detectors on a validation set. The model achieved an F1 score of 0.9837, which is a substantial improvement over the other beat detectors. Furthermore, the model was also evaluated on three other databases. The proposed network achieved high F1 scores across all datasets which established its generalizing capacity. Additionally, a thorough analysis of the models performance in the presence of different levels of noise was carried out.
Congestion prediction represents a major priority for traffic management centres around the world to ensure timely incident response handling. The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, however, this is a challenging task due to inter-dependencies of traffic flow both in time and space. Recently, deep learning techniques have shown significant prediction improvements over traditional models, however, open questions remain around their applicability, accuracy and parameter tuning. This paper brings two contributions in terms of: 1) applying an outlier detection an anomaly adjustment method based on incoming and historical data streams, and 2) proposing an advanced deep learning framework for simultaneously predicting the traffic flow, speed and occupancy on a large number of monitoring stations along a highly circulated motorway in Sydney, Australia, including exit and entry loop count stations, and over varying training and prediction time horizons. The spatial and temporal features extracted from the 36.34 million data points are used in various deep learning architectures that exploit their spatial structure (convolutional neuronal networks), their temporal dynamics (recurrent neuronal networks), or both through a hybrid spatio-temporal modelling (CNN-LSTM). We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future. Lastly, we prove that the anomaly adjustment method brings significant improvements to using deep learning in both time and space.
In this paper, we consider using deep neural network for OFDM symbol detection and demonstrate its performance advantages in combating large Doppler Shift. In particular, a new architecture named Cascade-Net is proposed for detection, where deep neural network is cascading with a zero-forcing preprocessor to prevent the network stucking in a saddle point or a local minimum point. In addition, we propose a sliding detection approach in order to detect OFDM symbols with large number of subcarriers. We evaluate this new architecture, as well as the sliding algorithm, using the Rayleigh channel with large Doppler spread, which could degrade detection performance in an OFDM system and is especially severe for high frequency band and mmWave communications. The numerical results of OFDM detection in SISO scenario show that cascade-net can achieve better performance than zero-forcing method while providing robustness against ill conditioned channels. We also show the better performance of the sliding cascade network (SCN) compared to sliding zero-forcing detector through numerical simulation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا