Do you want to publish a course? Click here

New Recipes for Brownian Loop Soups

108   0   0.0 ( 0 )
 Added by Valentino Foit
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We define a large new class of conformal primary operators in the ensemble of Brownian loops in two dimensions known as the ``Brownian loop soup, and compute their correlation functions analytically and in closed form. The loop soup is a conformally invariant statistical ensemble with central charge $c = 2 lambda$, where $lambda > 0$ is the intensity of the soup. Previous work identified exponentials of the layering operator $e^{i beta N(z)}$ as primary operators. Each Brownian loop was assigned $pm 1$ randomly, and $N(z)$ was defined to be the sum of these numbers over all loops that encircle the point $z$. These exponential operators then have conformal dimension ${frac{lambda}{10}}(1 - cos beta)$. Here we generalize this procedure by assigning a more general random value to each loop. The operator $e^{i beta N(z)}$ remains primary with conformal dimension $frac {lambda}{10}(1 - phi(beta))$, where $phi(beta)$ is the characteristic function of the probability distribution used to assign random values to each loop. Using recent results we compute in closed form the exact two-point functions in the upper half-plane and four-point functions in the full plane of this very general class of operators. These correlation functions depend analytically on the parameters $lambda, beta_i, z_i$, and on the characteristic function $phi(beta)$. They satisfy the conformal Ward identities and are crossing symmetric. As in previous work, the conformal block expansion of the four-point function reveals the existence of additional and as-yet uncharacterized conformal primary operators.



rate research

Read More

We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the Brownian Loop Soup. These correlation functions depend on multiple continuous parameters: the insertion points of the operators, the intensity of the soup, and the charges of the operators. In the case of the four-point function there is non-trivial dependence on five continuous parameters: the cross-ratio, the intensity, and three real charges. The four-point function is crossing symmetric. We analyze its conformal block expansion and discover a previously unknown set of new conformal primary operators.
In this paper we find new integrable one-dimensional lattice models of electrons. We classify all such nearest-neighbour integrable models with su(2)xsu(2) symmetry following the procedure first introduced in arXiv:1904.12005. We find 12 R-matrices of difference form, some of which can be related to known models such as the XXX spin chain and the free Hubbard model, and some are new models. In addition, integrable generalizations of the Hubbard model are found by keeping the kinetic term of the Hamiltonian and adding all terms which preserve fermion number. We find that most of the new models can not be diagonalized using the standard nested Bethe Ansatz.
In this work, we study generalized entropies and information geometry in a group-theoretical framework. We explore the conditions that ensure the existence of some natural properties and at the same time of a group-theoretical structure for a large class of entropies. In addition, a method for defining new entropies, using previously known ones with some desired group-theoretical properties is proposed. In the second part of this work, the information geometrical counterpart of the previous construction is examined and a general class of divergences are proposed and studied. Finally, a method of constructing new divergences from known ones is discussed; in particular, some results concerning the Riemannian structure associated with the class of divergences under investigation are formulated.
We discuss in this paper combinatorial aspects of boundary loop models, that is models of self-avoiding loops on a strip where loops get different weights depending on whether they touch the left, the right, both or no boundary. These models are described algebraically by a generalization of the Temperley-Lieb algebra, dubbed the two-boundary TL algebra. We give results for the dimensions of TL representations and the corresponding degeneracies in the partition functions. We interpret these results in terms of fusion and in the light of the recently uncovered A_n large symmetry present in loop models, paving the way for the analysis of the conformal field theory properties. Finally, we propose conjectures for determinants of Gram matrices in all cases, including the two-boundary one, which has recently been discussed by de Gier and Nichols.
Competition between unitary dynamics that scrambles quantum information non-locally and local measurements that probe and collapse the quantum state can result in a measurement-induced entanglement phase transition. Here we study this phenomenon in an analytically tractable all-to-all Brownian hybrid circuit model composed of qubits. The system is initially entangled with an equal sized reference, and the subsequent hybrid system dynamics either partially preserves or totally destroys this entanglement depending on the measurement rate. Our approach can access a variety of entropic observables which are distinguished by the averaging procedure, and for concreteness we focus on a particular purity quantity for which the averaging is particularly simple. We represent the purity as a path integral coupling four replicas with twisted boundary conditions. Saddle-point analysis reveals a second-order phase transition corresponding to replica permutation symmetry breaking below a critical measurement rate. The transition is mean-field-like and we characterize the critical properties near the transition in terms of a simple Ising field theory in 0+1 dimensions. In addition to studying the purity of the entire system, we study subsystem purities and relate these results to manifestations of quantum error correction in the model. We also comment on the experimental feasibility for simulating this averaged purity, and corroborate our results with exact diagonalization for modest system sizes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا