Do you want to publish a course? Click here

Unsaturated bipartite entanglement of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice

83   0   0.0 ( 0 )
 Added by Jozef Strecka
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A bipartite entanglement between two nearest-neighbor Heisenberg spins of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is quantified using a concurrence. It is shown that the concurrence equals zero in a classical ferromagnetic and a quantum disordered phase, while it becomes sizable though unsaturated in a quantum ferromagnetic phase. A thermally-assisted reentrance of the concurrence is found above a classical ferromagnetic phase, whereas a quantum ferromagnetic phase displays a striking cusp of the concurrence at a critical temperature.



rate research

Read More

149 - J. Strecka , C. Ekiz 2015
The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three inter-connected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes with increasing the coordination number of underlying Husimi lattice.
The ground state and zero-temperature magnetization process of the spin-1/2 Ising-Heisenberg model on two-dimensional triangles-in-triangles lattices is exactly calculated using eigenstates of the smallest commuting spin clusters. Our ground-state analysis of the investigated classical--quantum spin model reveals three unconventional dimerized or trimerized quantum ground states besides two classical ground states. It is demonstrated that the spin frustration is responsible for a variety of magnetization scenarios with up to three or four intermediate magnetization plateaus of either quantum or classical nature. The exact analytical results for the Ising-Heisenberg model are confronted with the corresponding results for the purely quantum Heisenberg model, which were obtained by numerical exact diagonalizations based on the Lanczos algorithm for finite-size spin clusters of 24 and 21 sites, respectively. It is shown that the zero-temperature magnetization process of both models is quite reminiscent and hence, one may obtain some insight into the ground states of the quantum Heisenberg model from the rigorous results for the Ising-Heisenberg model even though exact ground states for the Ising-Heisenberg model do not represent true ground states for the pure quantum Heisenberg model.
The frustrated spin-1/2 Ising-Heisenberg ladder with Heisenberg intra-rung and Ising inter-rung interactions is exactly solved in a longitudinal magnetic field by taking advantage of the local conservation of the total spin on each rung and the transfer-matrix method. We have rigorously calculated the ground-state phase diagram, magnetization process, magnetocaloric effect and basic thermodynamic quantities for the model, which can be alternatively viewed as an Ising-Heisenberg tetrahedral chain. It is demonstrated that a stepwise magnetization curve with an intermediate plateau at a half of the saturation magnetization is also reflected in respective stepwise changes of the concurrence serving as a measure of bipartite entanglement. The ground-state phase diagram and zero-temperature magnetization curves of the Ising-Heisenberg tetrahedral chain are contrasted with the analogous results of the purely quantum Heisenberg tetrahedral chain, which have been obtained through density-matrix renormalization group (DMRG) calculations. While both ground-state phase diagrams fully coincide in the regime of weak inter-rung interaction, the purely quantum Heisenberg tetrahedral chain develops Luttinger spin-liquid and Haldane phases for strongly coupled rungs which are absent in the Ising-Heisenberg counterpart model.
The mixed spin-1/2 and spin-1 Ising model on the Bethe lattice with both uniaxial as well as biaxial single-ion anisotropy terms is exactly solved by combining star-triangle and triangle-star mapping transformations with exact recursion relations. Magnetic properties (magnetization, phase diagrams and compensation phenomenon) are investigated in detail. The particular attention is focused on the effect of uniaxial and biaxial single-ion anisotropies that basically influence the magnetic behavior of the spin-1 atoms.
254 - Jozef Strecka , Cesur Ekiz 2010
The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved with the help of decoration-iteration transformation and exact recursion relations. It is shown that the model under investigation exhibits reentrant phase transitions whenever a sufficiently high coordination number of the underlying Bethe lattice is considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا