Do you want to publish a course? Click here

White Dwarfs in the Era of the LSST and its Synergies with Space-Based Missions

71   0   0.0 ( 0 )
 Added by Nicholas Fantin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the imminent start of the Legacy Survey for Space and Time (LSST) on the Vera C. Rubin Observatory, and several new space telescopes expected to begin operations later in this decade, both time domain and wide-field astronomy are on the threshold of a new era. In this paper, we use a new, multi-component model for the distribution of white dwarfs (WDs) in our Galaxy to simulate the WD populations in four upcoming wide-field surveys (i.e., LSST, Euclid, the Roman Space Telescope and CASTOR) and use the resulting samples to explore some representative WD science cases. Our results confirm that LSST will provide a wealth of information for Galactic WDs, detecting more than 150 million WDs at the final depth of its stacked, 10-year survey. Within this sample, nearly 300,000 objects will have 5$sigma$ parallax measurements and nearly 7 million will have 5$sigma$ proper motion measurements, allowing the detection of the turn-off in the halo WD luminosity function and the discovery of more than 200,000 ZZ Ceti stars. The wide wavelength coverage that will be possible by combining LSST data with observations from Euclid, and/or the Roman Space Telescope, will also discover more than 3,500 WDs with debris disks, highlighting the advantages of combining data between the ground- and space-based missions.



rate research

Read More

This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planets atmosphere that classifies them with respect to planetary radius and incident stellar flux.
168 - Emese Plachy 2017
Cepheid stars are crucial objects for a variety of topics that range from stellar pulsation and the evolution of intermediate-mass stars to the understanding the structure of the Galaxy and the Universe through the distance measurements they provide. The developments in hydrodynamical calculations, the release of large ground-based surveys, and the advent of continuous, space-based photometry revealed many puzzling phenomena about these stars in the last few years. In this paper I collected some important and new results in the topics of distance measurements and binarity investigations. I also summarize the most recent discoveries in their light variations, such as period doubling, modulation, low-amplitude additional modes, period jitter and the signs of granulation, and discuss the new opportunities that current and future space missions will offer for us.
In the BH-galaxy co-evolution framework, most of the star-formation (SF) and the black hole (BH) accretion is expected to take place in highly obscured conditions. Thus, obscured AGN are difficult to identify in optical or X-ray bands, but shine bright in the IR. Moreover, X-ray background (XRB) synthesis models predict that a large fraction of the yet-unresolved XRB is due to the most obscured (Compton thick, CT) of these AGN. In this work, we investigate the synergies between putative IR missions (using SPICA, proposed for ESA/M5 but withdrawn in October 2020, and Origins Space Telescope, OST, as `templates) and the X-ray mission Athena, which should fly in early 2030s, in detecting and characterizing AGN, with a particular focus on the most obscured ones. Using an XRB synthesis model, we estimated the number of AGN and the number of those which will be detected in the X-rays. For each AGN we associated an optical-to-FIR SED from observed AGN with both X-ray data and SED decomposition, and used these SEDs to check if the AGN will be detected by SPICA-like or OST at IR wavelengths. We expect that, with the deepest Athena and SPICA-like (or OST) surveys, we will be able to detect in the IR more than $90,%$ of all the AGN (down to L$_{2-10text{keV}} sim 10^{42},$erg/s and up to $z sim 10$) predicted by XRB synthesis modeling, and we will detect at least half of them in the X-rays. Athena will be extremely powerful in detecting and discerning moderate- and high-luminosity AGN. We find that the most obscured and elusive CT-AGN will be exquisitely sampled by SPICA-like mission or OST and that Athena will allow a fine characterization of the most-luminous ones. This will provide a significant step forward in the process of placing stronger constraints on the yet-unresolved XRB and investigating the BH accretion rate evolution up to very high redshift ($z ge 4$).
We present a critical review of the determination of fundamental parameters of white dwarfs discovered by the Gaia mission. We first reinterpret color-magnitude and color-color diagrams using photometric and spectroscopic information contained in the Montreal White Dwarf Database (MWDD), combined with synthetic magnitudes calculated from a self-consistent set of model atmospheres with various atmospheric compositions. The same models are then applied to measure the fundamental parameters of white dwarfs using the so-called photometric technique, which relies on the exquisite Gaia trigonometric parallax measurements, and photometric data from Pan-STARRS, SDSS, and Gaia. In particular, we discuss at length the systematic effects induced by these various photometric systems. We then study in great detail the mass distribution as a function of effective temperature for the white dwarfs spectroscopically identified in the MWDD, as well as for the white dwarf candidates discovered by Gaia. We pay particular attention to the assumed atmospheric chemical composition of cool, non-DA stars. We also briefly revisit the validity of the mass-radius relation for white dwarfs, and the recent discovery of the signature of crystallization in the Gaia color-magnitude diagram for DA white dwarfs. We finally present evidence that the core composition of most of these white dwarfs is, in bulk, a mixture of carbon and oxygen, an expected result from stellar evolution theory, but never empirically well established before.
The IACOB spectroscopic survey of Galactic OB stars is an ambitious observational project aimed at compiling a large, homogeneous, high-resolution database of optical spectra of massive stars observable from the Northern hemisphere. The quantitative spectroscopic analysis of this database, complemented by the invaluable information provided by Gaia (mainly regarding photometry and distances), will represent a major step forward in our knowledge of the fundamental physical characteristics of Galactic massive stars. In addition, results from this analysis will be of interest for other scientific questions to be investigated using Gaia observations. In this contribution we outline the present status of the IACOB spectroscopic database and indicate briefly some of the synergy links between the IACOB and Gaia scientific projects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا