Do you want to publish a course? Click here

On the Measurement of Fundamental Parameters of White Dwarfs in the Gaia Era

124   0   0.0 ( 0 )
 Added by Pierre Bergeron
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a critical review of the determination of fundamental parameters of white dwarfs discovered by the Gaia mission. We first reinterpret color-magnitude and color-color diagrams using photometric and spectroscopic information contained in the Montreal White Dwarf Database (MWDD), combined with synthetic magnitudes calculated from a self-consistent set of model atmospheres with various atmospheric compositions. The same models are then applied to measure the fundamental parameters of white dwarfs using the so-called photometric technique, which relies on the exquisite Gaia trigonometric parallax measurements, and photometric data from Pan-STARRS, SDSS, and Gaia. In particular, we discuss at length the systematic effects induced by these various photometric systems. We then study in great detail the mass distribution as a function of effective temperature for the white dwarfs spectroscopically identified in the MWDD, as well as for the white dwarf candidates discovered by Gaia. We pay particular attention to the assumed atmospheric chemical composition of cool, non-DA stars. We also briefly revisit the validity of the mass-radius relation for white dwarfs, and the recent discovery of the signature of crystallization in the Gaia color-magnitude diagram for DA white dwarfs. We finally present evidence that the core composition of most of these white dwarfs is, in bulk, a mixture of carbon and oxygen, an expected result from stellar evolution theory, but never empirically well established before.



rate research

Read More

We present a homogeneous analysis of 1023 DBZ/DZ(A) and 319 DQ white dwarf stars taken from the Montreal White Dwarf Database. This represents a significant increase over the previous comprehensive studies on these types of objects. We use new trigonometric parallax measurements from the Gaia second data release, together with photometry from the Sloan Digital Sky Survey, Pan-STARRS, Gaia, or BVRI from the literature, which allow the determination of the mass for the majority of the objects in our sample. We use the photometric and spectroscopic techniques with the most recent model atmospheres available, which include high-density effects, to accurately determine the effective temperature, surface gravity, and heavy element abundances for each object. We study the abundance of hydrogen in DBZ/DZ white dwarfs and the properties of the accreted planetesimals. We explore the nature of the second sequence of DQ stars using proper motions from Gaia, and highlight evidence of crystallization in massive DQ stars. We also present mass distributions for both spectral types. Finally, we discuss the implications of our findings in the context of the spectral evolution of white dwarfs, and provide the atmospheric parameters for each star.
We report on a comparison of spectroscopic analyses for hydrogen (DA) and helium atmosphere (DB) white dwarfs with Gaia Data Release 2 (DR2) parallaxes and photometry. We assume a reddening law and a mass-radius relation to connect the effective temperatures (Teff) and surface gravities (log g) to masses and radii. This allows the comparison of two largely independent sets of fundamental parameters for 7039 DA and 521 DB stars with high-quality observations. This subset of the Gaia white dwarf sample is large enough to detect systematic trends in the derived parameters. We find that spectroscopic and photometric parameters generally agree within uncertainties when the expectation of a single star is verified. Gaia allows the identification of a small systematic offset in the temperature scale between the two techniques, as well as confirming a small residual high-mass bump in the DA mass distribution around 11,000-13,000 K. This assessment of the accuracy of white dwarf fundamental parameters derived from Gaia is a first step in understanding systematic effects in related astrophysical applications such as the derivation of the local stellar formation history, initial-to-final mass relation, and statistics of evolved planetary systems.
We analyzed the velocity space of the thin and thick-disk Gaia white dwarf population within 100 pc looking for signatures of the Hercules stellar stream. We aimed to identify those objects belonging to the Hercules stream and, by taking advantage of white dwarf stars as reliable cosmochronometers, to derive a first age distribution. We applied a kernel density estimation to the $UV$ velocity space of white dwarfs. For the region where a clear overdensity of stars was found, we created a 5-D space of dynamic variables. We applied a hierarchichal clustering method, HDBSCAN, to this 5-D space, identifying those white dwarfs that share similar kinematic characteristics. Finally, under general assumptions and from their photometric properties, we derived an age estimate for each object. The Hercules stream was firstly revealed as an overdensity in the $UV$ velocity space of the thick-disk white dwarf population. Three substreams were then found: Hercules $a$ and Hercules $b$, formed by thick-disk stars with an age distribution peaked $4,$Gyr in the past and extended to very old ages; and Hercules $c$, with a ratio of 65:35 thin:thick stars and a more uniform age distribution younger than 10 Gyr.
We present a study of the observational properties of Millisecond Pulsars (MSPs) by way of their magnetic fields, spin periods and masses. These measurements are derived through the scenario of Accretion Induced Collapse (AIC) of white dwarfs (WDs) in stellar binary systems, in order to provide a greater understanding of the characteristics of MSP populations. In addition, we demonstrate a strong evolutionary connection between neutron stars and WDs with binary companions from a stellar binary evolution perspective via the AIC process.
We present a catalogue of white dwarf candidates selected from Gaia early data release three (EDR3). We applied several selection criteria in absolute magnitude, colour, and Gaia quality flags to remove objects with unreliable measurements while preserving most stars compatible with the white dwarf locus in the Hertzsprung-Russell diagram. We then used a sample of over 30 000 spectroscopically confirmed white dwarfs and contaminants from the Sloan Digital Sky Survey (SDSS) to map the distribution of these objects in the Gaia absolute magnitude-colour space. Finally, we adopt the same method presented in our previous Gaia DR2 work to calculate a probability of being a white dwarf (Pwd) for $simeq$1.3 million sources which passed our quality selection. The Pwd values can be used to select a sample of $simeq$359 000 high-confidence white dwarf candidates in the magnitude range 8< G <21. We calculated stellar parameters (effective temperature, surface gravity, and mass) for all these stars by fitting Gaia astrometry and photometry with synthetic models. We estimate an upper limit of 93 per cent for the overall completeness of our catalogue for white dwarfs with G $leq$20 mag and effective temperature (Teff)>7000K, at high Galactic latitudes (|b|>20{deg}). Alongside the main catalogue we include a reduced-proper-motion extension containing $simeq$10 200 white dwarf candidates with unreliable parallax measurements which could, however be identified on the basis of their proper motion. We also performed a cross-match of our catalogues with SDSS DR16 spectroscopy and provide spectral classification based on visual inspection for all resulting matches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا