No Arabic abstract
Visual object tracking (VOT) is an essential component for many applications, such as autonomous driving or assistive robotics. However, recent works tend to develop accurate systems based on more computationally expensive feature extractors for better instance matching. In contrast, this work addresses the importance of motion prediction in VOT. We use an off-the-shelf object detector to obtain instance bounding boxes. Then, a combination of camera motion decouple and Kalman filter is used for state estimation. Although our baseline system is a straightforward combination of standard methods, we obtain state-of-the-art results. Our method establishes new state-of-the-art performance on VOT (VOT-2016 and VOT-2018). Our proposed method improves the EAO on VOT-2016 from 0.472 of prior art to 0.505, from 0.410 to 0.431 on VOT-2018. To show the generalizability, we also test our method on video object segmentation (VOS: DAVIS-2016 and DAVIS-2017) and observe consistent improvement.
A saliency guided hierarchical visual tracking (SHT) algorithm containing global and local search phases is proposed in this paper. In global search, a top-down saliency model is novelly developed to handle abrupt motion and appearance variation problems. Nineteen feature maps are extracted first and combined with online learnt weights to produce the final saliency map and estimated target locations. After the evaluation of integration mechanism, the optimum candidate patch is passed to the local search. In local search, a superpixel based HSV histogram matching is performed jointly with an L2-RLS tracker to take both color distribution and holistic appearance feature of the object into consideration. Furthermore, a linear refinement search process with fast iterative solver is implemented to attenuate the possible negative influence of dominant particles. Both qualitative and quantitative experiments are conducted on a series of challenging image sequences. The superior performance of the proposed method over other state-of-the-art algorithms is demonstrated by comparative study.
Modern multi-object tracking (MOT) systems usually model the trajectories by associating per-frame detections. However, when camera motion, fast motion, and occlusion challenges occur, it is difficult to ensure long-range tracking or even the tracklet purity, especially for small objects. Although re-identification is often employed, due to noisy partial-detections, similar appearance, and lack of temporal-spatial constraints, it is not only unreliable and time-consuming, but still cannot address the false negatives for occluded and blurred objects. In this paper, we propose an enhanced MOT paradigm, namely Motion-Aware Tracker (MAT), focusing more on various motion patterns of different objects. The rigid camera motion and nonrigid pedestrian motion are blended compatibly to form the integrated motion localization module. Meanwhile, we introduce the dynamic reconnection context module, which aims to balance the robustness of long-range motion-based reconnection, and includes the cyclic pseudo-observation updating strategy to smoothly fill in the tracking fragments caused by occlusion or blur. Additionally, the 3D integral image module is presented to efficiently cut useless track-detection association connections with temporal-spatial constraints. Extensive experiments on MOT16 and MOT17 challenging benchmarks demonstrate that our MAT approach can achieve the superior performance by a large margin with high efficiency, in contrast to other state-of-the-art trackers.
The ability to simultaneously track and reconstruct multiple objects moving in the scene is of the utmost importance for robotic tasks such as autonomous navigation and interaction. Virtually all of the previous attempts to map multiple dynamic objects have evolved to store individual objects in separate reconstruction volumes and track the relative pose between them. While simple and intuitive, such formulation does not scale well with respect to the number of objects in the scene and introduces the need for an explicit occlusion handling strategy. In contrast, we propose a map representation that allows maintaining a single volume for the entire scene and all the objects therein. To this end, we introduce a novel multi-object TSDF formulation that can encode multiple object surfaces at any given location in the map. In a multiple dynamic object tracking and reconstruction scenario, our representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. We evaluate the proposed TSDF++ formulation on a public synthetic dataset and demonstrate its ability to preserve reconstructions of occluded surfaces when compared to the standard TSDF map representation.
Motion blur caused by the moving of the object or camera during the exposure can be a key challenge for visual object tracking, affecting tracking accuracy significantly. In this work, we explore the robustness of visual object trackers against motion blur from a new angle, i.e., adversarial blur attack (ABA). Our main objective is to online transfer input frames to their natural motion-blurred counterparts while misleading the state-of-the-art trackers during the tracking process. To this end, we first design the motion blur synthesizing method for visual tracking based on the generation principle of motion blur, considering the motion information and the light accumulation process. With this synthetic method, we propose textit{optimization-based ABA (OP-ABA)} by iteratively optimizing an adversarial objective function against the tracking w.r.t. the motion and light accumulation parameters. The OP-ABA is able to produce natural adversarial examples but the iteration can cause heavy time cost, making it unsuitable for attacking real-time trackers. To alleviate this issue, we further propose textit{one-step ABA (OS-ABA)} where we design and train a joint adversarial motion and accumulation predictive network (JAMANet) with the guidance of OP-ABA, which is able to efficiently estimate the adversarial motion and accumulation parameters in a one-step way. The experiments on four popular datasets (eg, OTB100, VOT2018, UAV123, and LaSOT) demonstrate that our methods are able to cause significant accuracy drops on four state-of-the-art trackers with high transferability. Please find the source code at https://github.com/tsingqguo/ABA
Visual object tracking is an important task that requires the tracker to find the objects quickly and accurately. The existing state-ofthe-art object trackers, i.e., Siamese based trackers, use DNNs to attain high accuracy. However, the robustness of visual tracking models is seldom explored. In this paper, we analyze the weakness of object trackers based on the Siamese network and then extend adversarial examples to visual object tracking. We present an end-to-end network FAN (Fast Attack Network) that uses a novel drift loss combined with the embedded feature loss to attack the Siamese network based trackers. Under a single GPU, FAN is efficient in the training speed and has a strong attack performance. The FAN can generate an adversarial example at 10ms, achieve effective targeted attack (at least 40% drop rate on OTB) and untargeted attack (at least 70% drop rate on OTB).