Do you want to publish a course? Click here

NLNDE: The Neither-Language-Nor-Domain-Experts Way of Spanish Medical Document De-Identification

156   0   0.0 ( 0 )
 Added by Lukas Lange
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Natural language processing has huge potential in the medical domain which recently led to a lot of research in this field. However, a prerequisite of secure processing of medical documents, e.g., patient notes and clinical trials, is the proper de-identification of privacy-sensitive information. In this paper, we describe our NLNDE system, with which we participated in the MEDDOCAN competition, the medical document anonymization task of IberLEF 2019. We address the task of detecting and classifying protected health information from Spanish data as a sequence-labeling problem and investigate different embedding methods for our neural network. Despite dealing in a non-standard language and domain setting, the NLNDE system achieves promising results in the competition.



rate research

Read More

The purpose of this study is to analyze the efficacy of transfer learning techniques and transformer-based models as applied to medical natural language processing (NLP) tasks, specifically radiological text classification. We used 1,977 labeled head CT reports, from a corpus of 96,303 total reports, to evaluate the efficacy of pretraining using general domain corpora and a combined general and medical domain corpus with a bidirectional representations from transformers (BERT) model for the purpose of radiological text classification. Model performance was benchmarked to a logistic regression using bag-of-words vectorization and a long short-term memory (LSTM) multi-label multi-class classification model, and compared to the published literature in medical text classification. The BERT models using either set of pretrained checkpoints outperformed the logistic regression model, achieving sample-weighted average F1-scores of 0.87 and 0.87 for the general domain model and the combined general and biomedical-domain model. General text transfer learning may be a viable technique to generate state-of-the-art results within medical NLP tasks on radiological corpora, outperforming other deep models such as LSTMs. The efficacy of pretraining and transformer-based models could serve to facilitate the creation of groundbreaking NLP models in the uniquely challenging data environment of medical text.
We introduce CoWeSe (the Corpus Web Salud Espa~nol), the largest Spanish biomedical corpus to date, consisting of 4.5GB (about 750M tokens) of clean plain text. CoWeSe is the result of a massive crawler on 3000 Spanish domains executed in 2020. The corpus is openly available and already preprocessed. CoWeSe is an important resource for biomedical and health NLP in Spanish and has already been employed to train domain-specific language models and to produce word embbedings. We released the CoWeSe corpus under a Creative Commons Attribution 4.0 International license, both in Zenodo (url{https://zenodo.org/record/4561971#.YTI5SnVKiEA}).
Many of our core assumptions about how neural networks operate remain empirically untested. One common assumption is that convolutional neural networks need to be stable to small translations and deformations to solve image recognition tasks. For many years, this stability was baked into CNN architectures by incorporating interleaved pooling layers. Recently, however, interleaved pooling has largely been abandoned. This raises a number of questions: Are our intuitions about deformation stability right at all? Is it important? Is pooling necessary for deformation invariance? If not, how is deformation invariance achieved in its absence? In this work, we rigorously test these questions, and find that deformation stability in convolutional networks is more nuanced than it first appears: (1) Deformation invariance is not a binary property, but rather that different tasks require different degrees of deformation stability at different layers. (2) Deformation stability is not a fixed property of a network and is heavily adjusted over the course of training, largely through the smoothness of the convolutional filters. (3) Interleaved pooling layers are neither necessary nor sufficient for achieving the optimal form of deformation stability for natural image classification. (4) Pooling confers too much deformation stability for image classification at initialization, and during training, networks have to learn to counteract this inductive bias. Together, these findings provide new insights into the role of interleaved pooling and deformation invariance in CNNs, and demonstrate the importance of rigorous empirical testing of even our most basic assumptions about the working of neural networks.
In this paper, we introduce MedLane -- a new human-annotated Medical Language translation dataset, to align professional medical sentences with layperson-understandable expressions. The dataset contains 12,801 training samples, 1,015 validation samples, and 1,016 testing samples. We then evaluate one naive and six deep learning-based approaches on the MedLane dataset, including directly copying, a statistical machine translation approach Moses, four neural machine translation approaches (i.e., the proposed PMBERT-MT model, Seq2Seq and its two variants), and a modified text summarization model PointerNet. To compare the results, we utilize eleven metrics, including three new measures specifically designed for this task. Finally, we discuss the limitations of MedLane and baselines, and point out possible research directions for this task.
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MS^2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20k summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our systems generated summaries. Data and models are available at https://github.com/allenai/ms2

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا