Do you want to publish a course? Click here

Mechanical properties of model colloidal mono-crystals

77   0   0.0 ( 0 )
 Added by Thomas Salez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.



rate research

Read More

Sublattice melting is the loss of order of one lattice component in binary or ternary ionic crystals upon increase in temperature. A related transition has been predicted in colloidal crystals. To understand the nature of this transition, we study delocalization in self-assembled, size asymmetric binary colloidal crystals using a generalized molecular dynamics model. Focusing on BCC lattices, we observe a smooth change from localized-to-delocalized interstitial particles for a variety of interaction strengths. Thermodynamic arguments, mainly the absence of a discontinuity in the heat capacity, suggest that the passage from localization-to-delocalization is continuous and not a phase transition. This change is enhanced by lattice vibrations, and the temperature of the onset of delocalization can be tuned by the strength of the interaction between the colloid species. Therefore, the localized and delocalized regimes of the sublattice are dominated by enthalpic and entropic driving forces, respectively. This work sets the stage for future studies of sublattice melting in colloidal systems with different stoichiometries and lattice types, and it provides insights into superionic materials, which have potential for application in energy storage technologies.
134 - Ali Ehlen , Hector Lopez-Rios , 2021
Colloidal crystals formed by size-asymmetric binary particles co-assemble into a wide variety of colloidal compounds with lattices akin to ionic crystals. Recently, a transition from a compound phase with a sublattice of small particles to a metal-like phase in which the small particles are delocalized has been predicted computationally and observed experimentally. In this colloidal metallic phase, the small particles roam the crystal maintaining the integrity of the lattice of large particles, as electrons do in metals. A similar transition also occurs in superionic crystals, termed sublattice melting. Here, we use energetic principles and a generalized molecular dynamics model of a binary system of functionalized nanoparticles to analyze the transition to sublattice delocalization in different co-assembled crystal phases as a function of T, number of grafted chains on the small particles, and number ratio between the small and large particles $n_s$:$n_l$. We find that $n_s$:$n_l$ is the primary determinant of crystal type due to energetic interactions and interstitial site filling, while the number of grafted chains per small particle determines the stability of these crystals. We observe first-order sublattice delocalization transitions as T increases, in which the host lattice transforms from low- to high-symmetry crystal structures, including A20 to BCT to BCC, Ad to BCT to BCC, and BCC to BCC/FCC to FCC transitions and lattices. Analogous sublattice transitions driven primarily by lattice vibrations have been seen in some atomic materials exhibiting an insulator-metal transition also referred to as metallization. We also find minima in the lattice vibrations and diffusion coefficient of small particles as a function of $n_s$:$n_l$, indicating enhanced stability of certain crystal structures for $n_s$:$n_l$ values that form compounds.
134 - Chiu Fan Lee 2008
We study the two-filament insulin fibrils structure by incorporating recent simulation results and mechanical measurements. Our investigation suggests that the persistence length measurement correlates well with the previously proposed structural model, while the elasticity measurement suggests that stretching the fibril may involve hydrogen bond breakage. Our work illustrates an attempt to correlate nanoscale measurements with microscopic information on the quaternary protein structure.
We present recent advances in the instrumentation and analysis methods for quantitative imaging of concentrated colloidal suspensions under flow. After a brief review of colloidal imaging, we describe various flow geometries for two and and three-dimensional (3D) imaging, including a `confocal rheoscope. This latter combination of a confocal microscope and a rheometer permits simultaneous characterization of rheological response and 3D microstructural imaging. The main part of the paper discusses in detail how to identify and track particles from confocal images taken during flow. After analyzing the performance of the most commonly used colloid tracking algorithm by Crocker and Grier extended to flowing systems, we propose two new algorithms for reliable particle tracking in non-uniform flows to the level of accuracy already available for quiescent systems. We illustrate the methods by applying it to data collected from colloidal flows in three different geometries (channel flow, parallel plate shear and cone-plate rheometry).
In superionic compounds one component pre-melts providing high ionic conductivity to solid state electrolytes. Here, we find sublattice melting in colloidal crystals of oppositely charged particles that are highly asymmetric in size and charge in salt solutions. The small particles in ionic compounds melt when the temperature increases forming a superionic phase. These delocalized small particles in a crystal of large oppositely charged particles, in contrast to superionic phases in atomic systems, form crystals with non-electroneutral stoichiometric ratios. This generates structures with multiple domains of ionic crystals in percolated superionic phases with adjustable stoichiometries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا