Do you want to publish a course? Click here

GSoFa: Scalable Sparse Symbolic LU Factorization on GPUs

150   0   0.0 ( 0 )
 Added by Anil Gaihre
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Decomposing matrix A into a lower matrix L and an upper matrix U, which is also known as LU decomposition, is an essential operation in numerical linear algebra. For a sparse matrix, LU decomposition often introduces more nonzero entries in the L and U factors than in the original matrix. A symbolic factorization step is needed to identify the nonzero structures of L and U matrices. Attracted by the enormous potentials of the Graphics Processing Units (GPUs), an array of efforts have surged to deploy various LU factorization steps except for the symbolic factorization, to the best of our knowledge, on GPUs. This paper introduces gSoFa, the first GPU-based Symbolic factorization design with the following three optimizations to enable scalable LU symbolic factorization for nonsymmetric pattern sparse matrices on GPUs. First, we introduce a novel fine-grained parallel symbolic factorization algorithm that is well suited for the Single Instruction Multiple Thread (SIMT) architecture of GPUs. Second, we tailor supernode detection into a SIMT friendly process and strive to balance the workload, minimize the communication and saturate the GPU computing resources during supernode detection. Third, we introduce a three-pronged optimization to reduce the excessive space consumption problem faced by multi-source concurrent symbolic factorization. Taken together, gSoFa achieves up to 31x speedup from 1 to 44 Summit nodes (6 to 264 GPUs) and outperforms the state-of-the-art CPU project, on average, by 5x. Notably, gSoFa also achieves {up to 47%} of the peak memory throughput of a V100 GPU in Summit.



rate research

Read More

67 - Shilong Wang 2020
LDA is a statistical approach for topic modeling with a wide range of applications. However, there exist very few attempts to accelerate LDA on GPUs which come with exceptional computing and memory throughput capabilities. To this end, we introduce EZLDA which achieves efficient and scalable LDA training on GPUs with the following three contributions: First, EZLDA introduces three-branch sampling method which takes advantage of the convergence heterogeneity of various tokens to reduce the redundant sampling task. Second, to enable sparsity-aware format for both D and W on GPUs with fast sampling and updating, we introduce hybrid format for W along with corresponding token partition to T and inverted index designs. Third, we design a hierarchical workload balancing solution to address the extremely skewed workload imbalance problem on GPU and scaleEZLDA across multiple GPUs. Taken together, EZLDA achieves superior performance over the state-of-the-art attempts with lower memory consumption.
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: ideally, methods that can scale data volumes adaptively so as to enable negotiation of performance and fidelity tradeoffs in different situations. Multigrid-based hierarchical data representations hold promise as a solution to this problem, allowing for flexible conversion between different fidelities so that, for example, data can be created at high fidelity and then transferred or stored at lower fidelity via logically simple and mathematically sound operations. However, the effective use of such representations has been hindered until now by the relatively high costs of creating, accessing, reducing, and otherwise operating on such representations. We describe here highly optimized data refactoring kernels for GPU accelerators that enable efficient creation and manipulation of data in multigrid-based hierarchical forms. We demonstrate that our optimized design can achieve up to 264 TB/s aggregated data refactoring throughput -- 92% of theoretical peak -- on 1024 nodes of the Summit supercomputer. We showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
Dense linear algebra kernels, such as linear solvers or tensor contractions, are fundamental components of many scientific computing applications. In this work, we present a novel method of deriving parallel I/O lower bounds for this broad family of programs. Based on the X-partitioning abstraction, our method explicitly captures inter-statement dependencies. Applying our analysis to LU factorization, we derive COnfLUX, an LU algorithm with the parallel I/O cost of $N^3 / (P sqrt{M})$ communicated elements per processor -- only $1/3times$ over our established lower bound. We evaluate COnfLUX on various problem sizes, demonstrating empirical results that match our theoretical analysis, communicating asymptotically less than Cray ScaLAPACK or SLATE, and outperforming the asymptotically-optimal CANDMC library. Running on $1$,$024$ nodes of Piz Daint, COnfLUX communicates 1.6$times$ less than the second-best implementation and is expected to communicate 2.1$times$ less on a full-scale run on Summit.
Existing tensor factorization methods assume that the input tensor follows some specific distribution (i.e. Poisson, Bernoulli, and Gaussian), and solve the factorization by minimizing some empirical loss functions defined based on the corresponding distribution. However, it suffers from several drawbacks: 1) In reality, the underlying distributions are complicated and unknown, making it infeasible to be approximated by a simple distribution. 2) The correlation across dimensions of the input tensor is not well utilized, leading to sub-optimal performance. Although heuristics were proposed to incorporate such correlation as side information under Gaussian distribution, they can not easily be generalized to other distributions. Thus, a more principled way of utilizing the correlation in tensor factorization models is still an open challenge. Without assuming any explicit distribution, we formulate the tensor factorization as an optimal transport problem with Wasserstein distance, which can handle non-negative inputs. We introduce SWIFT, which minimizes the Wasserstein distance that measures the distance between the input tensor and that of the reconstruction. In particular, we define the N-th order tensor Wasserstein loss for the widely used tensor CP factorization and derive the optimization algorithm that minimizes it. By leveraging sparsity structure and different equivalent formulations for optimizing computational efficiency, SWIFT is as scalable as other well-known CP algorithms. Using the factor matrices as features, SWIFT achieves up to 9.65% and 11.31% relative improvement over baselines for downstream prediction tasks. Under the noisy conditions, SWIFT achieves up to 15% and 17% relative improvements over the best competitors for the prediction tasks.
90 - Yanhao Chen 2019
Priority queue, often implemented as a heap, is an abstract data type that has been used in many well-known applications like Dijkstras shortest path algorithm, Prims minimum spanning tree, Huffman encoding, and the branch-and-bound algorithm. However, it is challenging to exploit the parallelism of the heap on GPUs since the control divergence and memory irregularity must be taken into account. In this paper, we present a parallel generalized heap model that works effectively on GPUs. We also prove the linearizability of our generalized heap model which enables us to reason about the expected results. We evaluate our concurrent heap thoroughly and show a maximum 19.49X speedup compared to the sequential CPU implementation and 2.11X speedup compared with the existing GPU implementation. We also apply our heap to single source shortest path with up to 1.23X speedup and 0/1 knapsack problem with up to 12.19X speedup.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا