Do you want to publish a course? Click here

High Resolution, Wide Field, Narrow Band, Snapshot Imaging

88   0   0.0 ( 0 )
 Added by Chris Carilli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the imaging performance of an interferometric array in the case of wide field, high resolution, narrow band, snapshot imaging. We find that, when uv-cell sizes are sufficiently small (ie. image sizes are sufficiently large), each instantaneous visibility record is gridded into its own uv-cell. This holds even for dense arrays, like the core of the next generation VLA. In this particular, application, Uniform weighting of the gridded visibilities approaches Natural weighting, with its often deleterious consequences on the resulting synthesized beam. For a core-dominated array, we show that the resulting image noise is highly correlated on scales comparable to the spatial frequencies of the core baselines. In general, this study accentuates the fact that, for imaging applications that require high resolution (Plains array and greater), many of the core antennas can be employed as a separate subarray for low resolution science, without sacrificing the quality of the high resolution science.



rate research

Read More

The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically ~1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. The microlensing survey will also provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.
GravityCam is a new concept of ground-based imaging instrument capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. Advances in optical and near infrared imaging technologies allow images to be acquired at high speed without significant noise penalty. Aligning these images before they are combined can yield a 2.5 to 3 fold improvement in image resolution. By using arrays of such detectors, survey fields may be as wide as the telescope optics allows. Consequently, GravityCam enables both wide-field high-resolution imaging and high-speed photometry. We describe the instrument and detail its application to provide demographics of planets and satellites down to Lunar mass (or even below) across the Milky Way. GravityCam is also suited to improve the quality of weak shear studies of dark matter distribution in distant clusters of galaxies and multiwavelength follow-ups of background sources that are strongly lensed by galaxy clusters. The photometric data arising from an extensive microlensing survey will also be useful for asteroseismology studies, while GravityCam can be used to monitor fast multiwavelength flaring in accreting compact objects, and promises to generate a unique data set on the population of the Kuiper belt and possibly the Oort cloud.
With the development of modern radio interferometers, wide-field continuum surveys have been planned and undertaken, for which accurate wide-field imaging methods are essential. Based on the widely-used W-stacking method, we propose a new wide-field imaging algorithm that can synthesize visibility data from a model of the sky brightness via degridding, able to construct dirty maps from measured visibility data via gridding. Results carry the smallest approximation error yet achieved relative to the exact calculation involving the direct Fourier transform. In contrast to the original W-stacking method, the new algorithm performs least-misfit optimal gridding (and degridding) in all three directions, and is capable of achieving much higher accuracy than is feasible with the original algorithm. In particular, accuracy at the level of single precision arithmetic is readily achieved by choosing a least-misfit convolution function of width W=7 and an image cropping parameter of x_0=0.25. If the accuracy required is only that attained by the original W-stacking method, the computational cost for both the gridding and FFT steps can be substantially reduced using the proposed method by making an appropriate choice of the width and image cropping parameters.
We present a wide field, sub-arcminute resolution VLA image of the Galactic Center region at 330 MHz. With a resolution of ~ 7 X 12 and an RMS noise of 1.6 mJy/beam, this image represents a significant increase in resolution and sensitivity over the previously published VLA image at this frequency. The improved sensitivity has more than tripled the census of small diameter sources in the region, has resulted in the detection of two new Non Thermal Filaments (NTFs), 18 NTF candidates, 30 pulsar candidates, reveals previously known extended sources in greater detail, and has resulted in the first detection of Sagittarius A* in this frequency range. A version of this paper containing full resolution images may be found at http://lwa.nrl.navy.mil/nord/AAAB.pdf.
Binospec is a high throughput, 370 to 1000 nm, imaging spectrograph that addresses two adjacent 8 by 15 fields of view. Binospec was commissioned in late 2017 at the f/5 focus of the 6.5m MMT and is now available to all MMT observers. Aperture masks cut from stainless steel with a laser cutter are used to define the entrance apertures that range from 15 long slits to hundreds of 2 slitlets. System throughputs, including the MMTs mirrors and the f/5 wide-field corrector peak at ~30%. Three reflection gratings, duplicated for the two beams, provide resolutions ($lambda$/$Delta lambda$) between 1300 and $>$5000 with a 1 wide slit. Two through-the-mask guiders are used for target acquisition, mask alignment, guiding, and precision offsets. A full-time Shack-Hartmann wave front sensor allows continuous adjustment of primary mirror support forces, telescope collimation and focus. Active flexure control maintains spectrograph alignment and focus under varying gravity and thermal conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا