No Arabic abstract
In speech recognition problems, data scarcity often poses an issue due to the willingness of humans to provide large amounts of data for learning and classification. In this work, we take a set of 5 spoken Harvard sentences from 7 subjects and consider their MFCC attributes. Using character level LSTMs (supervised learning) and OpenAIs attention-based GPT-2 models, synthetic MFCCs are generated by learning from the data provided on a per-subject basis. A neural network is trained to classify the data against a large dataset of Flickr8k speakers and is then compared to a transfer learning network performing the same task but with an initial weight distribution dictated by learning from the synthetic data generated by the two models. The best result for all of the 7 subjects were networks that had been exposed to synthetic data, the model pre-trained with LSTM-produced data achieved the best result 3 times and the GPT-2 equivalent 5 times (since one subject had their best result from both models at a draw). Through these results, we argue that speaker classification can be improved by utilising a small amount of user data but with exposure to synthetically-generated MFCCs which then allow the networks to achieve near maximum classification scores.
In recent years, Text-To-Speech (TTS) has been used as a data augmentation technique for speech recognition to help complement inadequacies in the training data. Correspondingly, we investigate the use of a multi-speaker TTS system to synthesize speech in support of speaker recognition. In this study we focus the analysis on tasks where a relatively small number of speakers is available for training. We observe on our datasets that TTS synthesized speech improves cross-domain speaker recognition performance and can be combined effectively with multi-style training. Additionally, we explore the effectiveness of different types of text transcripts used for TTS synthesis. Results suggest that matching the textual content of the target domain is a good practice, and if that is not feasible, a transcript with a sufficiently large vocabulary is recommended.
In this work, we study leveraging extra text data to improve low-resource end-to-end ASR under cross-lingual transfer learning setting. To this end, we extend our prior work [1], and propose a hybrid Transformer-LSTM based architecture. This architecture not only takes advantage of the highly effective encoding capacity of the Transformer network but also benefits from extra text data due to the LSTM-based independent language model network. We conduct experiments on our in-house Malay corpus which contains limited labeled data and a large amount of extra text. Results show that the proposed architecture outperforms the previous LSTM-based architecture [1] by 24.2% relative word error rate (WER) when both are trained using limited labeled data. Starting from this, we obtain further 25.4% relative WER reduction by transfer learning from another resource-rich language. Moreover, we obtain additional 13.6% relative WER reduction by boosting the LSTM decoder of the transferred model with the extra text data. Overall, our best model outperforms the vanilla Transformer ASR by 11.9% relative WER. Last but not least, the proposed hybrid architecture offers much faster inference compared to both LSTM and Transformer architectures.
We propose an end-to-end speaker-attributed automatic speech recognition model that unifies speaker counting, speech recognition, and speaker identification on monaural overlapped speech. Our model is built on serialized output training (SOT) with attention-based encoder-decoder, a recently proposed method for recognizing overlapped speech comprising an arbitrary number of speakers. We extend SOT by introducing a speaker inventory as an auxiliary input to produce speaker labels as well as multi-speaker transcriptions. All model parameters are optimized by speaker-attributed maximum mutual information criterion, which represents a joint probability for overlapped speech recognition and speaker identification. Experiments on LibriSpeech corpus show that our proposed method achieves significantly better speaker-attributed word error rate than the baseline that separately performs overlapped speech recognition and speaker identification.
Due to the widespread deployment of fingerprint/face/speaker recognition systems, attacking deep learning based biometric systems has drawn more and more attention. Previous research mainly studied the attack to the vision-based system, such as fingerprint and face recognition. While the attack for speaker recognition has not been investigated yet, although it has been widely used in our daily life. In this paper, we attempt to fool the state-of-the-art speaker recognition model and present textit{speaker recognition attacker}, a lightweight model to fool the deep speaker recognition model by adding imperceptible perturbations onto the raw speech waveform. We find that the speaker recognition system is also vulnerable to the attack, and we achieve a high success rate on the non-targeted attack. Besides, we also present an effective method to optimize the speaker recognition attacker to obtain a trade-off between the attack success rate with the perceptual quality. Experiments on the TIMIT dataset show that we can achieve a sentence error rate of $99.2%$ with an average SNR $57.2text{dB}$ and PESQ 4.2 with speed rather faster than real-time.
In this work, we learn a shared encoding representation for a multi-task neural network model optimized with connectionist temporal classification (CTC) and conventional framewise cross-entropy training criteria. Our experiments show that the multi-task training not only tackles the complexity of optimizing CTC models such as acoustic-to-word but also results in significant improvement compared to the plain-task training with an optimal setup. Furthermore, we propose to use the encoding representation learned by the multi-task network to initialize the encoder of attention-based models. Thereby, we train a deep attention-based end-to-end model with 10 long short-term memory (LSTM) layers of encoder which produces 12.2% and 22.6% word-error-rate on Switchboard and CallHome subsets of the Hub5 2000 evaluation.