Do you want to publish a course? Click here

Investigating the XENON1T Low-Energy Electronic Recoil Excess Using NEST

120   0   0.0 ( 0 )
 Added by Cecilia Levy
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The search for dark matter, the missing mass of the Universe, is one of the most active fields of study within particle physics. The XENON1T experiment recently observed a 3.5$sigma$ excess potentially consistent with dark matter, or with solar axions. Here, we will use the Noble Element Simulation Technique (NEST) software to simulate the XENON1T detector, reproducing the excess. We utilize different detector efficiency and energy reconstruction models, but they primarily impact sub-keV energies and cannot explain the XENON1T excess. However, using NEST, we can reproduce their excess in multiple, unique ways, most easily via the addition of 31$pm$11 $^{37}Ar$ decays. Furthermore, this results in new, modified background models, reducing the significance of the excess to $le2.2sigma$ at least using non-Profile Likelihood Ratio (PLR) methods. This is independent confirmation that the excess is a real effect, but potentially explicable by known physics. Many cross-checks of our $^{37}Ar$ hypothesis are presented.



rate research

Read More

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 times 10^{-12}$, $g_{ae}g_{an}^{eff}<4.8times 10^{-18}$, and $g_{ae}g_{agamma}<7.7times10^{-22} GeV^{-1}$, and excludes either $g_{ae}=0$ or $g_{ae}g_{agamma}=g_{ae}g_{an}^{eff}=0$. The neutrino magnetic moment signal is similarly favored over background at 3.2$sigma$ and a confidence interval of $mu_{ u} in (1.4,2.9)times10^{-11}mu_B$ (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by $beta$ decays of tritium at 3.2$sigma$ with a trace amount that can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are reduced to 2.0$sigma$ and 0.9$sigma$, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at ($2.3pm0.2$) keV (68% C.L.) with a 3.0$sigma$ global (4.0$sigma$ local) significance. We also consider the possibility that $^{37}$Ar may be present in the detector and yield a 2.82 keV peak. Contrary to tritium, the $^{37}$Ar concentration can be tightly constrained and is found to be negligible.
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galaxy, so we speculate about their possible nature and origin, such as fast moving DM sub-haloes, semi-annihilations of DM and relativistic axions produced by a nearby axion star. Feasible new physics scenarios must accommodate exotic DM dynamics and unusual DM properties.
The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in ${}^{235}$U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted ${}^{235}$U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.
Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar $pp$ and $^{7}textrm{Be}$ neutrinos at the precision level of current standard solar model predictions. In this work we perform $textit{ab initio}$ many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about $25%$. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalization for xenon detectors, and discuss its implication for low energy solar neutrino detection (as the signal) and WIMP search (as a source of background).
The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا