Do you want to publish a course? Click here

The Basic Geometric Structures of Electromagnetic Digital Information: Statistical characterization of the digital measurement of spatio-Doppler and polarimetric fluctuations of the radar electromagnetic wave

58   0   0.0 ( 0 )
 Added by Yann Cabanes
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The aim is to describe new geometric approaches to define the statistics of spatio-temporal and polarimetric measurements of the states of an electromagnetic wave, using the works of Maurice Fr{e}chet, Jean-Louis Koszul and Jean-Marie Souriau, with in particular the notion of average state of this digital measurement as a Fr{e}chet barycentre in a metric space and a model derived from statistical mechanics to define and calculate a maximum density of entropy (extension of the notion of Gaussian) to describe the fluctuations of the electromagnetic wave. The article will illustrate these new tools with examples of radar application for Doppler, spatio-temporal and polarimetric measurement of the electromagnetic wave by introducing a distance on the covariance matrices of the electromagnetic digital signal, based on Fishers metric from Information Geometry.



rate research

Read More

Bluetooth Low Energy (BLE) is a short-range data transmission technology that is used for multimedia file sharing, home automation, and internet-of-things application. In this work, we perform packet error rate (PER) measurement and RF testing of BLE receiver in the harsh electromagnetic environment and in presence of RF interference. We check the PER performance in the line-of-sight (LOS) and non-line-of-sight (NLOS) scenario in absence of any interfering signal and in presence of wideband WLAN interference. The BLE PER measurements are conducted in a large reverberation chamber which is a rich scattering environment. Software-defined-radio has been used to create BLE communication link for PER measurement in LOS and NLOS configuration. The BLE PER is measured both in the presence and in absence of WLAN interference. Our measurement results show a higher PER for uncoded BLE PHY modes in NLOS channel condition and in presence of wideband interference. Whereas coded BLE PHY modes i.e. LE500K and LE125K are robust to interference with lower PER measurements.
We present the first experimental demonstration of learned time-domain digital back-propagation (DBP), in 64-GBd dual-polarization 64-QAM signal transmission over 1014 km. Performance gains were comparable to those obtained with conventional, higher complexity, frequency-domain DBP.
We investigate methods for experimental performance enhancement of auto-encoders based on a recurrent neural network (RNN) for communication over dispersive nonlinear channels. In particular, our focus is on the recently proposed sliding window bidirectional RNN (SBRNN) optical fiber autoencoder. We show that adjusting the processing window in the sequence estimation algorithm at the receiver improves the reach of simple systems trained on a channel model and applied as is to the transmission link. Moreover, the collected experimental data was used to optimize the receiver neural network parameters, allowing to transmit 42 Gb/s with bit-error rate (BER) below the 6.7% hard-decision forward error correction threshold at distances up to 70km as well as 84 Gb/s at 20 km. The investigation of digital signal processing (DSP) optimized on experimental data is extended to pulse amplitude modulation with receivers performing sliding window sequence estimation using a feed-forward or a recurrent neural network as well as classical nonlinear Volterra equalization. Our results show that, for fixed algorithm memory, the DSP based on deep learning achieves an improved BER performance, allowing to increase the reach of the system.
151 - A.A. Korol , N.A. Melnikova 2016
This paper presents the design, implementation and validation of the software alignment procedure used to perform geometric calibration of the electromagnetic calorimeter with respect to the tracking system of the SND detector which is taking data at the VEPP-2000 e^{+}e^{-}collider (BINP, Novosibirsk). This procedure is based on the mathematical model describing the relative calorimeter position. The parameter values are determined by minimizing a chi^{2} function using the difference between particle directions reconstructed in these two subdetectors for e^{+}e^{-}rightarrow e^{+}e^{-} scattering events. The results of the calibration applied to data and MC simulation fit the model well and give an improvement in particle reconstruction. They are used in data reconstruction and MC simulation.
256 - Faiza Iftikhar , Usman Khan , 2019
Fabry-Perot fiber etalons (FPE) built from three or more reflectors are attractive for a variety of applications including communications and sensing. For accelerating a research and development work, one often desires to use off-the-shelf components to build an FPE with a required transmission profile for a particular application. Usually, multistage FPEs are designed with equal lengths of cavities followed by determination of the required reflectivities for realizing a desired transmission profile. As seen in previous works, fabricated reflectors are usually slightly different from the designed ones leading to departure from the desired transmission profile of the FPE. Here, we show a novel digital synthesis of multistage etalons with off-the-shelf reflectors and unequal lengths of involved cavities. We find that, in contrast to equal cavity lengths, unequal lengths of cavities provide more number of poles in the $z$-domain to achieve a desired multicavity FPE transmission response. For given reflectivities and by determining correct unequal lengths of cavities with our synthesis technique, we demonstrate a design example of increasing the FSR followed by its experimental validation. This work is generalizable to ring resonators, mirrored, and fiber Bragg grating based cavities; enabling the design and optimization of cavity systems for a wide range of applications including lasers, sensors, and filters.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا