Do you want to publish a course? Click here

Experimental Investigation of Deep Learning for Digital Signal Processing in Short Reach Optical Fiber Communications

75   0   0.0 ( 0 )
 Added by Laurent Schmalen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We investigate methods for experimental performance enhancement of auto-encoders based on a recurrent neural network (RNN) for communication over dispersive nonlinear channels. In particular, our focus is on the recently proposed sliding window bidirectional RNN (SBRNN) optical fiber autoencoder. We show that adjusting the processing window in the sequence estimation algorithm at the receiver improves the reach of simple systems trained on a channel model and applied as is to the transmission link. Moreover, the collected experimental data was used to optimize the receiver neural network parameters, allowing to transmit 42 Gb/s with bit-error rate (BER) below the 6.7% hard-decision forward error correction threshold at distances up to 70km as well as 84 Gb/s at 20 km. The investigation of digital signal processing (DSP) optimized on experimental data is extended to pulse amplitude modulation with receivers performing sliding window sequence estimation using a feed-forward or a recurrent neural network as well as classical nonlinear Volterra equalization. Our results show that, for fixed algorithm memory, the DSP based on deep learning achieves an improved BER performance, allowing to increase the reach of the system.



rate research

Read More

We present a novel end-to-end autoencoder-based learning for coherent optical communications using a parallelizable perturbative channel model. We jointly optimized constellation shaping and nonlinear pre-emphasis achieving mutual information gain of 0.18 bits/sym./pol. simulating 64 GBd dual-polarization single-channel transmission over 30x80 km G.652 SMF link with EDFAs.
We transmit probabilistic enumerative sphere shaped dual-polarization 64-QAM at 350Gbit/s/channel over 1610km SSMF using a short blocklength of 200. A reach increase of 15% over constant composition distribution matching with identical blocklength is demonstrated.
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system performance, in this paper, we adopt a deep transfer learning (DTL) approach to implicitly extract the features of communication channel and directly recover tag symbols. Inspired by the powerful capability of convolutional neural networks (CNN) in exploring the features of data in a matrix form, we design a novel covariance matrix aware neural network (CMNet)-based detection scheme to facilitate DTL for tag signal detection, which consists of offline learning, transfer learning, and online detection. Specifically, a CMNet-based likelihood ratio test (CMNet-LRT) is derived based on the minimum error probability (MEP) criterion. Taking advantage of the outstanding performance of DTL in transferring knowledge with only a few training data, the proposed scheme can adaptively fine-tune the detector for different channel environments to further improve the detection performance. Finally, extensive simulation results demonstrate that the BER performance of the proposed method is comparable to that of the optimal detection method with perfect CSI.
60 - Tianhua Xu 2017
The achievable information rates of optical communication networks have been widely increased over the past four decades with the introduction and development of optical amplifiers, coherent detection, advanced modulation formats, and digital signal processing techniques. These developments promoted the revolution of optical communication systems and the growth of Internet, towards the direction of high-capacity and long-distance transmissions. The performance of long-haul high-capacity optical fiber communication systems is significantly degraded by transmission impairments, such as chromatic dispersion, polarization mode dispersion, laser phase noise and Kerr fiber nonlinearities. With the entire capture of the amplitude and phase of the signals using coherent optical detection, the powerful compensation and effective mitigation of the transmission impairments can be implemented using the digital signal processing in electrical domain. This becomes one of the most promising techniques for next-generation optical communication networks to achieve a performance close to the Shannon capacity limit. This chapter will focus on the introduction and investigation of digital signal processing employed for channel impairments compensation based on the coherent detection of optical signals, to provide a roadmap for the design and implementation of realtime optical fiber communication systems.
We present the first experimental demonstration of learned time-domain digital back-propagation (DBP), in 64-GBd dual-polarization 64-QAM signal transmission over 1014 km. Performance gains were comparable to those obtained with conventional, higher complexity, frequency-domain DBP.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا