Do you want to publish a course? Click here

Polarizing the Medium: Fermion-Mediated Interactions between Bosons

216   0   0.0 ( 0 )
 Added by Renyuan Liao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a homogeneous mixture of bosons and polarized fermions. We find that long-range and attractive fermion-mediated interactions between bosons have dramatic effects on the properties of the bosons. We construct the phase diagram spanned by boson-fermion mass ratio and boson-fermion scattering parameter. It consists of stable region of mixing and unstable region toward phase separation. In stable mixing phase, the collective long-wavelength excitations can either be well-behaved with infinite lifetime or be finite in lifetime suffered from the Landau damping. We examine the effects of the induced interaction on the properties of weakly interacting bosons. It turns out that the induced interaction not only enhances the repulsion between the bosons against collapse but also enhances the stability of the superfluid state by suppressing quantum depletion.



rate research

Read More

We derive an integral equation describing $N$ two-dimensional bosons with zero-range interactions and solve it for the ground state energy $B_N$ by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling $B_Npropto 8.567^N$ predicted by Hammer and Son [Phys. Rev. Lett. {bf 93}, 250408 (2004)] in the large-$N$ limit.
We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experiment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By investigating the dynamics of the longitudinal momentum distribution function and the transverse excitation, we observe and quantify a two-stage relaxation process. In the initial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas out of the quantum degenerate regime. The momentum distribution function asymptotically approaches the distribution of quasimomenta (rapidities), which are conserved in an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes towards thermal equilibrium through the collisions with transversely excited atoms. Moreover, we tune the dynamics in the dimensional crossover by initializing the evolution with different imprinted longitudinal momenta (energies). The dynamical evolution towards the relaxed state is quantitatively described by a semiclassical molecular dynamics simulation.
Ultracold bosonic atoms in optical lattices self-organize into a variety of structural and quantum phases when placed into a single-mode cavity and pumped by a laser. Cavity optomechanical effects induce an atom density modulation at the cavity-mode wave length that competes with the optical lattice arrangement. Simultaneously short-range interactions via particle hopping promote superfluid order, such that a variety of structural and quantum coherent phases can occur. We analyze the emerging phase diagram in two dimensions by means of an extended Bose-Hubbard model using a local mean field approach combined with a superfluid cluster analysis. For commensurate ratios of the cavity and external lattice wave lengths the Mott insulator-superfluid transition is modified by the appearance of charge density wave and supersolid phases, at which the atomic density supports the buildup of a cavity field. For incommensurate ratios, the optomechanical forces induce the formation of Bose-glass and superglass phases, namely non-superfluid and superfluid phases, respectively, displaying quasi-periodic density modulations, which in addition can exhibit structural and superfluid stripe formation. The onset of such structures is constrained by the onsite interaction and is favourable at fractional densities. Experimental observables are identified and discussed.
The study of topological effects in physics is a hot area, and only recently researchers were able to address the important issues of topological properties of interacting quantum systems. But it is still a great challenge to describe multi-particle and interaction effects. Here, we introduce multi-particle Wannier states for interacting systems with co-translational symmetry. We reveal how the shift of multi-particle Wannier state relates to the multi-particle Chern number, and study the two-boson Thouless pumping in an interacting Rice-Mele model. In addition to the bound-state Thouless pumping in which two bosons move unidirectionally as a whole, we find topologically resonant tunneling in which two bosons move unidirectionally, one by the other, provided the neighboring-well potential bias matches the interaction energy. Our work creates a new paradigm for multi-particle topological effects and lays a cornerstone for detecting interacting topological states.
We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationary system we derive a closed analytical form of the expansion coefficients of the time-evolved two-body wavefunction, whose dynamics is determined by an expansion over the postquench eigenstates. The emergent dynamical response of the system is analyzed in detail by inspecting several observables such as the fidelity, the reduced one-body densities, the radial probability density of the relative wavefunction in both real and momentum space as well as the Tan contact unveiling the existence of short range two-body correlations. It is found that when the system is initialized in its bound state it is perturbed in the most efficient manner compared to any other initial configuration. Moreover, starting from an interacting ground state the two-boson response is enhanced for quenches towards the non-interacting limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا