Do you want to publish a course? Click here

Multi-particle Wannier states and Thouless pumping of interacting bosons

66   0   0.0 ( 0 )
 Added by Chaohong Lee
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of topological effects in physics is a hot area, and only recently researchers were able to address the important issues of topological properties of interacting quantum systems. But it is still a great challenge to describe multi-particle and interaction effects. Here, we introduce multi-particle Wannier states for interacting systems with co-translational symmetry. We reveal how the shift of multi-particle Wannier state relates to the multi-particle Chern number, and study the two-boson Thouless pumping in an interacting Rice-Mele model. In addition to the bound-state Thouless pumping in which two bosons move unidirectionally as a whole, we find topologically resonant tunneling in which two bosons move unidirectionally, one by the other, provided the neighboring-well potential bias matches the interaction energy. Our work creates a new paradigm for multi-particle topological effects and lays a cornerstone for detecting interacting topological states.



rate research

Read More

388 - Fuyuki Matsuda , Masaki Tezuka , 2019
We propose a two-dimensional (2D) version of Thouless pumping that can be realized by using ultracold atoms in optical lattices. To be specific, we consider a 2D square lattice tight-binding model with an obliquely introduced superlattice. It is demonstrated that quantized particle transport occurs in this system, and that the transport is expressed as a solution of a Diophantine equation. This topological nature can be understood by mapping the Hamiltonian to a three-dimensional (3D) cubic lattice model with a homogeneous magnetic field. We also propose a continuum model with obliquely introduced superlattice and obtain the amount of pumping by calculating the Berry curvature. For this model, the same Diophantine equation can be derived from the plane-wave approximation. Furthermore, we investigate the effect of a harmonic trap by solving the time-dependent Schrodinger equation. Under a harmonic trap potential, as often used in cold atom experiments, we show, by numerical simulations, that nearly quantized pumping occurs when the phase of the superlattice potential is driven at a moderate speed. Also, we find that two regions appear, the Hofstadter region and the rectifying region, depending on the modulation amplitude of the superlattice potential. In the rectifying region with larger modulation amplitudes, we uncover that the pumping direction is restricted to exactly the $x$-axis or the $y$-axis direction. This difference in these two regions causes a crossover behavior, characterizing the effect of the harmonic trap.
We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experiment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By investigating the dynamics of the longitudinal momentum distribution function and the transverse excitation, we observe and quantify a two-stage relaxation process. In the initial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas out of the quantum degenerate regime. The momentum distribution function asymptotically approaches the distribution of quasimomenta (rapidities), which are conserved in an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes towards thermal equilibrium through the collisions with transversely excited atoms. Moreover, we tune the dynamics in the dimensional crossover by initializing the evolution with different imprinted longitudinal momenta (energies). The dynamical evolution towards the relaxed state is quantitatively described by a semiclassical molecular dynamics simulation.
We derive an integral equation describing $N$ two-dimensional bosons with zero-range interactions and solve it for the ground state energy $B_N$ by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling $B_Npropto 8.567^N$ predicted by Hammer and Son [Phys. Rev. Lett. {bf 93}, 250408 (2004)] in the large-$N$ limit.
We theoretically analyse the equation of topological solitons in a chain of particles interacting via a repulsive power-law potential and confined by a periodic lattice. Starting from the discrete model, we perform a gradient expansion and obtain the kink equation in the continuum limit for a power law exponent $n ge 1$. The power-law interaction modifies the sine-Gordon equation, giving rise to a rescaling of the coefficient multiplying the second derivative (the kink width) and to an additional integral term. We argue that the integral term does not affect the local properties of the kink, but it governs the behaviour at the asymptotics. The kink behaviour at the center is dominated by a sine-Gordon equation and its width tends to increase with the power law exponent. When the interaction is the Coulomb repulsion, in particular, the kink width depends logarithmically on the chain size. We define an appropriate thermodynamic limit and compare our results with existing studies performed for infinite chains. Our formalism allows one to systematically take into account the finite-size effects and also slowly varying external potentials, such as for instance the curvature in an ion trap.
We consider a homogeneous mixture of bosons and polarized fermions. We find that long-range and attractive fermion-mediated interactions between bosons have dramatic effects on the properties of the bosons. We construct the phase diagram spanned by boson-fermion mass ratio and boson-fermion scattering parameter. It consists of stable region of mixing and unstable region toward phase separation. In stable mixing phase, the collective long-wavelength excitations can either be well-behaved with infinite lifetime or be finite in lifetime suffered from the Landau damping. We examine the effects of the induced interaction on the properties of weakly interacting bosons. It turns out that the induced interaction not only enhances the repulsion between the bosons against collapse but also enhances the stability of the superfluid state by suppressing quantum depletion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا