Do you want to publish a course? Click here

Optimizing Quantum Teleportation and Dense Coding via Mixed Noise Under Non-Markovian Approximation

70   0   0.0 ( 0 )
 Added by Akbar Islam
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Physicists are attracted to open-system dynamics, how quantum systems evolve, and how they can protected from unnecessary environmental noise, especially environmental memory effects are not negligible, as with non-Markovian approximations. There are several methods to solve master equation of non-Markovian cases, we obtain the solutions of quantum-state-diffusion equation for a two qubit system using perturbation method, which under influence of various types of environmental noises, i.e., relaxation, dephasing and mix of them. We found that mixing these two types of noises benefit the quantum teleportation and quantum super-dense coding, that by introducing strong magnetic field on the relaxation processes will enhance quantum correlation in some time-scale.



rate research

Read More

Open quantum systems and study of decoherence are important for our fundamental understanding of quantum physical phenomena. For practical purposes, there exists a large number of quantum protocols exploiting quantum resources, e.g. entanglement, which allows to go beyond what is possible to achieve by classical means. We combine concepts from open quantum systems and quantum information science, and give a proof-of-principle experimental demonstration -- with teleportation -- that it is possible to implement efficiently a quantum protocol via non-Markovian open system. The results show that, at the time of implementation of the protocol, it is not necessary to have the quantum resource in the degree of freedom used for the basic protocol -- as long as there exists some other degree of freedom, or environment of an open system, which contains useful resources. The experiment is based on a pair of photons, where their polarizations act as open system qubits and frequencies as their environments -- while the path degree of freedom of one of the photons represents the state of Alices qubit to be teleported to Bobs polarization qubit.
In order to understand the resourcefulness of a natural quantum system in quantum communication tasks, we study the dense coding capacity (DCC) and teleportation fidelity (TF) of Haar uniformly generated random multipartite states of various ranks. We prove that when a rank-2 two-qubit state, a Werner state, and a pure state possess the same amount of entanglement, the DCC of a rank-2 state belongs to the envelope made by pure and Werner states. In a similar way, we obtain an upper bound via the generalized Greenberger-Horne-Zeilinger state for rank-2 three-qubit states when the dense coding with two senders and a single receiver is performed and entanglement is measured in the senders:receiver bipartition. The normalized frequency distribution of DCC for randomly generated two-, three- and four-qubit density matrices with global as well as local decodings at the receivers end are reported. The estimation of mean DCC for two-qubit states is found to be in good agreement with the numerical simulations. Universally, we observe that the performance of random states for dense coding as well as teleportation decreases with the increase of the rank of states which we have shown to be surmounted by the local pre-processing operations performed on the shared states before starting the protocols, irrespective of the rank of the states. The local pre-processing employed here is based on positive operator valued measurements along with classical communication and we show that unlike dense coding with two-qubit random states, senders operations are always helpful to probabilistically enhance the capabilities of implementing dense coding as well as teleportation.
We consider a general model of unitary parameter estimation in presence of Markovian noise, where the parameter to be estimated is associated with the Hamiltonian part of the dynamics. In absence of noise, unitary parameter can be estimated with precision scaling as $1/T$, where $T$ is the total probing time. We provide a simple algebraic condition involving solely the operators appearing in the quantum Master equation, implying at most $1/sqrt{T}$ scaling of precision under the most general adaptive quantum estimation strategies. We also discuss the requirements a quantum error-correction like protocol must satisfy in order to regain the $1/T$ precision scaling in case the above mentioned algebraic condition is not satisfied. Furthermore, we apply the developed methods to understand fundamental precision limits in atomic interferometry with many-body effects taken into account, shedding new light on the performance of non-linear metrological models.
We investigate the dynamics of quantum correlations (QC) under the effects of reservoir memory, as a resource for quantum information and computation tasks. Quantum correlations of two-qubit systems are used for implementing quantum teleportation successfully, and for investigating how teleportation fidelity, violation of Bell-CHSH inequality, quantum steering and entanglement are connected with each other under the influence of noisy environments. Both Markovian and non-Markovian channels are considered, and it is shown that the decay and revival of correlations follow the hierarchy of quantum correlations in the state space. Noise tolerance of quantum correlations are checked for different types of unital and non-unital quantum channels, with and without memory. The quantum speed limit time $(tau_{QSL})$ is investigated from the perspective of memory of quantum noise, and the corresponding dynamics is used to analyze the evolution of quantum correlations. We establish the connection between information backflow, quantum speed limit time and dynamics of quantum correlations for non-Markovian quantum channels.
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا